6.730 Physics for Solid State Applications

Lecture 8: Lattice Waves in 1D Monatomic Crystals
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e Overview of Lattice Vibrations so far

e Models for Vibrations in Discrete 1-D Lattice

e Example of Nearest Neighbor Coupling Only

e Relating Microscopic and Macroscopic Quantities



Continuum Models
1-D Wave Equation
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Velocity of sound, ¢, is proportional to stiffness and inverse prop. to inertia

Periodic Boundary Conditions: Traveling Waves

ug(x,t) = Ax exp(ikx) exp (iwt) w = ck



Continuum Models
T3 Specific Heat

(hyperphysics.phy-astr.gsu.edu)

Cy = C¢ + Cphonon =T + AT3
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The Atomistic Perspective
Arrangement of Atoms and Bond Orientations
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4 Types of Unit Cell
= Primitive
I = Body-Centred
| = Face-Centred
C =SideCentred
+
7 Crystal Classes
— 14 Bravais Lattices




The Atomistic Perspective
Arrangement of Atoms and Bond Orientations

Diamond Crystal Structure:
Silicon
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« Tetrahedral bond arrangement
« Each atom has 4 nearest neighbors and

12 next nearest neighbors
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The Atomistic Perspective
Vibrational Motion of Nuclei
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Strain in a Discrete Lattice
Example of Nearest Neighbor Interactions

equilibrium
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u[n, t] is the discrete displacement of an atom from its equilibrium position



Strain in a Discrete Lattice
General Expansion

The potential energy associated with the strain is a complex function of
the displacements.
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where Vo = V({uli, t]}))eq

and the force on each lattice atom

Fn,t] = — v vanishes at equilibrium
ouln, t] eq



Harmonic Matrix
Spring Constants Between Lattice Atoms
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Harmonic Matrix: D(n,m) =
Ouln, t] dulm,t] /o

D(n,m) = D(m,n) D(n,m) = D(n—m) for infinite lattices
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Dynamics of Lattice Atoms
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Force on the j# atom (away from equilibrium)...
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Solutions of Equations of Motion
Convert to Difference Equation
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Mdt—Qu[n,t] = — Z D(n,m)u[m,t]
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Time harmonic solutions...

i[n,t] = Uln, wle” ™!

Plugging in, converts equation of motion into coupled difference equations:

Mw?U[nl = Y D(n,m)U[m]
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Solutions of Equations of Motion

Mw?U[nl = Y D(n,m)U[m]
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We can guess solution of the form:

Olp+1] = Ulplz~* and Ulp] = U[0]="F

This is equivalent to taking the z-transform...

Mw?U]0] =( fj E(n,m)znm) 0[0]
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Solutions of Equations of Motion
Consider Undamped Lattice Vibrations
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We are going to consider the undamped vibrations of the lattice:
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Solutions of Equations of Motion
Dynamical Matrix
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Solutions of Equations of Motion
Dynamical Matrix

Mw2 = D(k) = io: 5(p)e—ikap

p=—0C

Dynamicalvl\/l atrix D(k)

D(n,m) = <8u[n, t] Ou[m, t] ) eq

D(n,m) = D(n —m) = D(p)
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Strain in a Discrete Lattice
Example of Nearest Neighbor Interactions

equilibrium
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Strain in a Discrete Lattice
Example of Nearest Neighbor Interactions
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Strain in a Discrete Lattice
Example of Nearest Neighbor Interactions

Harmonic matrix:
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D(n,m) = ( o7V

ou[n,t] Ou[m, t]
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D(0) = 2a and D(+1) = —a

Dynamical matrix:
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D(k) = 2a — ae " — qet*® = 20(1 — cos ka)
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Strain in a Discrete Lattice
Example of Nearest Neighbor Interactions
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Strain in a Discrete Lattice
Example of Nearest Neighbor Interactions
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k=-27/a k=-m/a A k=r/a B k=2m/a

AV

From what we know about Brillouin zones the points A and B
(related by a reciprocal lattice vector) must be identical

w(k) = w(k +n2n/a)

This implies that the wave form of the vibrating atoms must also be identical.



Strain in a Discrete Lattice
Example of Nearest Neighbor Interactions

A: k=-0.7r/a
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But: note that point B represents a wave travelling right, and point A one travelling left



Strain in a Discrete Lattice
Example of Nearest Neighbor Interactions

K=-27t/a
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Consider point C at the zone boundary

When k=n/a, A=2a, and motion becomes
that of a standing wave (the atoms are

bouncing backward and forward against
each other

<+ \=2a »




Strain in a Discrete Lattice
Example of Nearest Neighbor Interactions
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In the limit of long-wavelength, we should recover the continuum model...
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Linear dispersion, just like the sound waves for the continuum solid
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