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1. For our LCAO model we construct our trial wave function 

typically using only the outermost orbitals. In other words, in a 

system with b atoms in the basis and n outermost orbitals per 

atom, the total number of orbitals in the LCAO wave function is 

nb. How many atomic orbitals will you have for your material? 

Why?  
 

Our material is gallium arsenide (GaAs). The electronic structures of atomic Ga (31 

electrons) and As (33 electrons) are given as: 

Ga: 121062622 44333221 psdpspss     (1) 

 As: 321062622 44333221 psdpspss      (2) 

The valence, or outermost, electrons of Ga and As are the ones with principal quantum 

number n=4. In GaAs, the wave functions for these valence electrons are well described 

by the 4s and 4p wave functions of each atom, i.e., by the s4 , xp4 , yp4 , and zp4  

orbitals of Ga and As. 

The basis of the GaAs crystal has 2 atoms (one Ga and one As). If the valence 

electrons are shared equally between the two, there are 4 outermost orbitals per atom, so 

the total number of orbitals in the LCAO wave function is 42× =8. Thus, the 

Hamiltonian will be an 88×  matrix. Here, a linear combination of atomic orbitals has 

been assumed. We know from elsewhere that the tetrahedral structure of GaAs leads to 

sp3 hybridization. The sp3 hybrid orbitals can however be expressed as linear 

combinations of the atomic s and p orbitals. Therefore, the LCAO approximation used 

here is fairly good.  

 
2. Conceivably, one could also construct the LCAO wave function 

out of core orbitals as well as valence orbitals. If you did so, 

how many atomic wave functions would you have to use for 

your material? How large would your Hamiltonian matrix be in 

this case? How do you expect your results would differ from 
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those you would get with just valence bands? What if we used 

higher orbitals, too? How many orbitals per atom would we 

have to use to get an “exact” band structure? Why? 
 

The atomic electronic structures of Ga and As were listed above in Eq. (1) and (2). From 

these equations, it is seen that Ga and As both have 14 core atomic orbitals. There are one 

1s, 2s, and 3s orbitals each; there are three 2p and 3p orbitals each; and there are five 3d 

orbitals for each atom. Combining the 28 total core orbitals with the 8 total valence 

orbitals gives 36 orbitals. Thus, 36 orbitals will be needed if both core and valence 

orbitals are included in the LCAO model for GaAs. The Hamiltonian matrix will 

correspondingly be 3636 × . 

Originally, when only the valence orbitals were included, only 8 bands were 

found. If all the core orbitals were also taken into account, then 36 bands would be 

calculated. These extra bands would lie below the previously calculated bands. 

Consequently, we would now have estimates for energies of lower lying bands. The 

original 8 bands would be only slightly affected by using a much larger Hamiltonian 

matrix. Since more basis functions are being used, we would expect that the calculated 

structure for the original 8 valence and conduction bands would improve, albeit only 

slightly, over the band structure determined when only the valence orbitals were used in 

the LCAO. 

We can also include totally unoccupied orbitals. Since there are an infinite 

number of energy levels up to the 0 (free) energy, we could use an infinite number of 

unoccupied levels. Of course, adding unoccupied orbitals will increase the size of the 

Hamiltonian matrix and therefore increase the number of bands calculated. The extra 

bands would lie above the conduction bands calculated with valence orbital LCAO. 

These bands are almost completely empty at any moderate temperature, so they would 

not have a strong influence on the valence and conduction bands. However, they should 

improve the valence and conduction band calculations marginally because as more 

orbitals are added, the finite basis expansion more closely approximates a complete basis. 

To get an exact answer, we would have to have a complete basis, which requires that all 

the orbitals, an infinite number, be used (core, valence and unoccupied).  
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1. What are the atomic configurations of the two atoms in your 

material? Which orbitals do you expect to play a significant role 

in bonding? 
 

The atomic configurations of Ga and As as given in Eq. (1) and (2) are repeated 

below.  

Ga: 121062622 44333221 psdpspss  

       As: 321062622 44333221 psdpspss  

The orbitals that play a significant role in bonding are the outermost or valence 

orbitals. These are s4 , xp4 , yp4 , and zp4  from both atoms in the basis (Ga and As).  

 
2. Draw all the atoms in the basis and all their nearest neighbors 

with appropriate orbitals on each atom. Label the orbitals 

according to their lattice vector, basis vector, orbital type, and 

the type atom they are associated with (cation or anion). For 

example, the s orbital on the cation at lattice vector R, basis 

vector τ would be labeled ( )τφ +Rsc . 
 

The Ga atoms are anions and the As atoms are cations. The Ga atoms are arbitrarily 

chosen to be at the origin of the basis. Therefore, the basis Ga atoms are at basis vector 

( )0,0,0  and cell vector R
r

 and have orbitals 〉)(| , RGas

r
φ , 〉)(| , RGapx

r
φ , 〉)(| , RGapy

r
φ , 

〉)(| , RGapz

r
φ . The nearest neighbors of these Ga atoms are 4 As atoms. The Ga atom and 

its 4 neighboring atoms are shown in Fig. 1. Atom 1 is an As atom at 







4
1,

4
1,

4
1 , with cell 

vector R
r

, and with orbitals 〉)(| , RAss

r
φ , 〉)(| , RAspx

r
φ , 〉)(| , RAspy

r
φ , 〉)(| , RAspz

r
φ . Atom 2 is an 

As atom at 





 −−

4
1,

4
1,

4
1 , with cell vector 1RR

rr
+  (where )ˆˆ(

21 zy iiaR +−=
r

), and with 

orbitals 〉+ )(| 1, RRAss

rr
φ , 〉+ )(| 1, RRAspx

rr
φ , 〉+ )(| 1, RRAspy

rr
φ , 〉+ )(| 1, RRAspz

rr
φ . Atom 3 is an 
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As atom at 





 −−

4
1,

4
1,

4
1 , with cell vector 2RR

rr
+  (where )ˆˆ(

22 zx iiaR +−=
r

), and with 

orbitals 〉+ )(| 2, RRAss

rr
φ , 〉+ )(| 2, RRAspx

rr
φ , 〉+ )(| 2, RRAspy

rr
φ , 〉+ )(| 2, RRAspz

rr
φ . Atom 4 is an 

As atom at 





 −−

4
1,

4
1,

4
1 , with cell vector 3RR

rr
+  (where )ˆˆ(

23 yx iiaR +−=
r

), and with 

orbitals 〉+ )(| 3, RRAss

rr
φ , 〉+ )(| 3, RRAspx

rr
φ , 〉+ )(| 3, RRAspy

rr
φ , 〉+ )(| 3, RRAspz

rr
φ . 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 1: Basis Ga atom and four As nearest neighbors.  
Blue regions have a positive sign. Red regions have a negative sign. 

 
To prevent Fig.1 from becoming too cluttered, the pz orbitals are not shown. 

Displacements in the x and y directions are shown as a shift of the center and 

displacements in the z direction are shown as an increase (positive displacement) or 

decrease (negative displacement) in size. The origin is at the center of the Ga atom. The 

px and py orbitals have their positive lobes along the +x and +y directions. 

The basis As atoms are then at basis vector 







4
1,

4
1,

4
1  and cell vector R

r
, and 

have orbitals 〉)(| , RAss

r
φ , 〉)(| , RAspx

r
φ , 〉)(| , RAspy

r
φ , 〉)(| , RAspz

r
φ . The nearest neighbors of 

these As atoms are 4 Ga atoms in a tetrahedral structure just as was the case with the Ga 
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atoms. The configuration is shown in Fig. 2. Atom 1 is at ( )0,0,0 , with cell vector R
r

, and 

with orbitals written above. Atom 2 is a Ga atom at 







2
1,

2
1,0 , with cell vector 4RR

rr
+  

(where )ˆˆ(
24 zy iiaR +=

r
), and with orbitals 〉+ )(| 4, RRGas

rr
φ , 〉+ )(| 4, RRGapx

rr
φ , 

〉+ )(| 4, RRGapy

rr
φ , 〉+ )(| 4, RRGapz

rr
φ . Atom 3 is a Ga atom at 








2
1,0,

2
1 , with cell vector 

5RR
rr

+  (where )ˆˆ(
25 zx iiaR +=

r
), and with orbitals 〉+ )(| 5, RRGas

rr
φ , 〉+ )(| 5, RRGapx

rr
φ , 

〉+ )(| 5, RRGapy

rr
φ , 〉+ )(| 5, RRGapz

rr
φ . Atom 4 is a Ga atom at 






 0,

2
1,

2
1 , with cell vector 

6RR
rr

+  (where )ˆˆ(
26 yx iiaR +=

r
), and with orbitals 〉+ )(| 6, RRGas

rr
φ , 〉+ )(| 6, RRGapx

rr
φ , 

〉+ )(| 6, RRGapy

rr
φ , 〉+ )(| 6, RRGapz

rr
φ .  

 

 
 

 

 

 

 

 

 

 

 

 
Figure 2: Basis As atom and four Ga nearest neighbors.  

Blue regions have a positive sign. Red regions have a negative sign. 
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Fig. 2 looks almost identical to Fig. 1, which is to be expected because the crystal 

is geometrically invariant with respect to switching Ga and As atoms. The center of the 

As atom is at 







4
1,

4
1,

4
1 . 

 

3. Show that one can approximate all the nearest neighbor 

interactions with one of the following… 
 

There are three general types of interactions between the Ga and As atoms:  

A) interactions between 4s and 4s orbitals 

B) interactions between 4s and 4p orbitals, and  

C) interactions between 4p and 4p orbitals. 

A) Interaction between 4s and 4s orbitals of different atoms  

This interaction takes place between Ga at ( )0,0,0  and its 4 As nearest-neighbors, 

and between atom As at 







4
1,

4
1,

4
1  and its 4 GA nearest neighbors. The distance between 

any nearest-neighbors is the same, 
4
3 a, and in each case, an s orbital of Ga interacts 

with an s orbital of As. The overlap with the Hamiltonian of the s states does not depend 

on the direction from As to Ga because the s states and the Hamiltonian are radially 

symmetric. The overlap of two s states is shown in Fig. 3 

 

 

 

 

 

Figure 3: Overlap of Ga and As s states 

 

In the following sections, the notations W and T are used for the 2 types of atoms, Ga and 

As.  The notation W is used for Ga atoms (anions), and T for As atoms (cations). 
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)(ˆ)()
4
1,

4
1,

4
1(ˆ)0,0,0( ,,,, RHRHVE TsWsTsWsssss

vr
φφφφσ ===   (3a) 

= )(ˆ)( 1,, RRHR TsWs

rvr
+φφ      (3b) 

 )(ˆ)( 2,, RRHR TsWs

rvr
+= φφ        (3c) 

= )(ˆ)( 3,, RRHR TsWs

rvr
+φφ      (3d) 

= )(ˆ)( ,, RHR WsTs

vr
φφ        (3e) 

= )(ˆ)( 5,, RRHR WsTs

rvr
+φφ        (3f) 

= )(ˆ)( 6,, RRHR WsTs

rvr
+φφ        (3g) 

The phase factors are given as 

32110
RkiRkiRki eeeg
rrrrrr

⋅−⋅−⋅− +++=            (4) 

 and  
∗⋅−⋅−⋅− =+++ 0

6541 geee RkiRkiRki
rrrrrr

            (5) 

because 14 RR
rr

−= , 25 RR
rr

−= , 36 RR
rr

−= . 

Therefore, the terms in the Hamiltonian matrix will be 

0gEss  and ∗
0gEss . 

B) Interaction between 4s and zyxp ,,4  orbitals of different atoms  

This interaction, again, takes place between Ga at ( )0,0,0  and its 4 As nearest-neighbors, 

and between As at 







4
1,

4
1,

4
1  and its 4 Ga nearest neighbors.  We analyze this interaction 

in all the possible cases: 

Case B1: Ga at ( )0,0,0  and its 4 As nearest-neighbors atoms at 







 −−






 −−






 −−








4
1,

4
1,

4
1,

4
1,

4
1,

4
1,

4
1,

4
1,

4
1,

4
1,

4
1,

4
1 . d̂  vectors are from Ga to the As 

atoms. 

This is the situation shown in Fig. 1. 
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







=

3
1,

3
1,

3
1ˆ

0d      (6) 









−−=

3
1,

3
1,

3
1ˆ

1d     (7)  









−−=

3
1,

3
1,

3
1ˆ

2d     (8) 









−−=

3
1,

3
1,

3
1ˆ

3d     (9) 

 The relevant geometry for d0 is shown in Fig. 4 

  

 

 

 
 

 

 

Figure 4: Interaction between Ga 4s and As 4px  

In the figure, )0,0,1(ˆ =b . Calculating the individual inner products gives,   

bdbdbdbd ˆˆˆˆˆˆˆˆ
3

1
3210 ⋅−=⋅−=⋅=⋅=    (10) 

)
4
1,

4
1,

4
1(ˆ)0( ,, TpxWs H φφ = )(ˆ)( ,, RHR TpxWs

rr
φφ = σσ spsp VVbd

3
1ˆˆ

0 =⋅ = spE      (11) 

with phase factor 1, 

)(ˆ)( 1,, RRHR TpxWs

rrr
+φφ = σσ spsp VVbd

3
1ˆˆ

1 =⋅ = spE   (12) 

with phase factor 1Rkie
rr

⋅− , 

)(ˆ)( 2,, RRHR TpxWs

rrr
+φφ = σσ spsp VVbd

3
1ˆˆ

2 −=⋅ = spE−       (13) 

with phase factor 2Rkie
rr

⋅− , and 
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)(ˆ)( 3,, RRHR TpxWs

rrr
+φφ = σσ spsp VVbd

3
1ˆˆ

3 −=⋅ = spE−       (14) 

with phase factor 3Rkie
rr

⋅− . 

Putting the above results together, the term in the Hamiltonian overlap matrix is: 

1)1( 321 gEeeeE sp
RkiRkiRki

sp =−−+ ⋅−⋅−⋅−
rrrrrr

    (15) 

In calculating TpyWs H ,,
ˆ φφ , we must use )0,1,0(ˆ =b . Then,  

bdbdbdbd ˆˆˆˆˆˆˆˆ
3

1
3210 ⋅−=⋅=⋅−=⋅=     (16) 

and 

)
4
1,

4
1,

4
1(ˆ)0( ,, TpyWs H φφ = )(ˆ)( ,, RHR TpyWs

rr
φφ = σσ spsp VVbd

3
1ˆˆ

0 =⋅ = spE      (17) 

)(ˆ)( 1,, RRHR TpyWs

rrr
+φφ = σσ spsp VVbd

3
1ˆˆ

1 −=⋅ = spE−      (18) 

)(ˆ)( 2,, RRHR TpyWs

rrr
+φφ = σσ spsp VVbd

3
1ˆˆ

2 =⋅ = spE   (19) 

)(ˆ)( 3,, RRHR TpyWs

rrr
+φφ = σσ spsp VVbd

3
1ˆˆ

3 −=⋅ = spE−      (20) 

Putting the above results together, the term in the overlap Hamiltonian matrix is: 

2)1( 321 gEeeeE sp
RkiRkiRki

sp =−+− ⋅−⋅−⋅−
rrrrrr

     (21) 

The calculation of the other matrix element, TpzWs H ,,
ˆ φφ , proceeds in a similar fashion. 

)1,0,0(ˆ =b , bdbdbdbd ˆˆˆˆˆˆˆˆ
3

1
3210 ⋅=⋅−=⋅−=⋅= , and 

)
4
1,

4
1,

4
1(ˆ)0( ,, TpzWs H φφ = )(ˆ)( ,, RHR TpzWs

rr
φφ = σσ spsp VVbd

3
1ˆˆ

0 =⋅ = spE      (22) 

)(ˆ)( 1,, RRHR TpzWs

rrr
+φφ = σσ spsp VVbd

3
1ˆˆ

1 −=⋅ = spE−      (23) 
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)(ˆ)( 2,, RRHR TpzWs

rrr
+φφ = σσ spsp VVbd

3
1ˆˆ

2 −=⋅ = spE−       (24) 

)(ˆ)( 3,, RRHR TpzWs

rrr
+φφ = σσ spsp VVbd

3
1ˆˆ

3 =⋅ = spE   (25) 

and the Hamiltonian overlap matrix term is  

3)1( 321 gEeeeE sp
RkiRkiRki

sp =+−− ⋅−⋅−⋅−
rrrrrr

    (26) 

For TsWzypx H ,,,,
ˆ φφ , the terms are equal to TzypxWs H ,,,,

ˆ φφ−  from above, and the 

Hamiltonian overlap matrix elements are 1gEsp− ,  2gEsp− , and 3gEsp−  for px , py , pz, 

respectively.  

Case B2:  As atom at 







4
1,

4
1,

4
1  and its 4 nearest-neighbor Ga atoms at 

( ) 





















 0,

2
1,

2
1,

2
1,0,

2
1,

2
1,

2
1,0,0,0,0 . d̂  vectors are from As to the Ga atoms. This is the 

situation shown in Fig. 2. 

00
ˆ

3
1,

3
1,

3
1'ˆ dd −=








−−−=           (27) 

14
ˆ

3
1,

3
1,

3
1ˆ dd −=








−=          (28) 

25
ˆ

3
1,

3
1,

3
1ˆ dd −=








−=          (29) 

36
ˆ

3
1,

3
1,

3
1ˆ dd −=








−=         (30) 

Because 00
ˆ'ˆ dd −= , 14

ˆ'ˆ dd −= , 25
ˆ'ˆ dd −= , 36

ˆ'ˆ dd −= , the values of all the s-px,y,z 

combinations will be opposite in sign to their corresponding ones calculated above in 

Case B1.  Also, because 14 RR
rr

−= ,  25 RR
rr

−= , 36 RR
rr

−= , the terms ig ’s  will become 

∗
ig .  So, the terms in the Hamiltonian will be ∗− 1gEsp , ∗− 2gEsp , ∗− 3gEsp , ∗

1gEsp , ∗
2gEsp ,  

∗
3gEsp . 
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C) Interaction between zyxp ,,4  orbitals of different atoms. 

Case C1: Interaction between a 4px orbital of one atom and a 4px orbital of its nearest 

neighbor. 

For example, the case when there is a Ga atom at (0,0,0) and an As atom at 







4
1,

4
1,

4
1  is 

shown in Fig. 5 

 

 

 

 

 

Figure 5: Interaction of Ga px and As px orbitals 

)
3

1,
3

1,
3

1(ˆ =d , and )0,0,1(ˆˆ
21 == bb . Thus,  

xxpppp

pppppppppppp

pppp

pppp

ppppTpxWpx

EVV

VVVVVV

VV

VV

VdbdbdbdbVbdbdRHR

=+=

=+=+++=−−−−+=

=−⋅−+=

=−⋅−+⋅=

=⋅−⋅−+⋅⋅=

πσ

πσπσπσ

πσ

πσ

πσφφ

3
2

3
1

9
6

3
1)

9
1

9
1

9
4(

3
1)

3
1,

3
1,

3
2)(

3
1,

3
1,

3
2(

3
1

)]
3
1,

3
1,

3
1()0,0,1[()]

3
1,

3
1,

3
1()0,0,1[(

3
1

)]
3

1,
3

1,
3

1(
3

1)0,0,1[()]
3

1,
3

1,
3

1(
3

1)0,0,1[(
3

1
3

1

)]ˆˆ(ˆˆ)][ˆˆ(ˆˆ[)ˆˆ)(ˆˆ()(ˆ)( 221121,,

rr

 (31) 

The value will be the same for different atoms px-px, py-py and pz-pz interactions, because 

the distance between any nearest-neighbors is the same, 
4
3 a, and the orbitals considered 

in the interaction are parallel to each other, so basically all pairs of nearest-neighbors are 
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equivalent with respect to this type of interaction.  The terms in the Hamiltonian will be 

0gExx  and ∗
0gExx . 

 

Case C2: p-p interactions not covered in Case C1.  

 For example, the case of a px orbital of Ga atom at (0,0,0) and py orbital of As at 









4
1,

4
1,

4
1  is shown in Fig. 6. 

 

 

 

  

Figure 6: Interaction of Ga px and As py 

)
3

1,
3

1,
3

1(ˆ =d , and )0,0,1(1̂ =b  and )0,1,0(ˆ
2 =b . Then 

xypppp

pppppppppppp

pppp

pppp

ppppTpyWpx

EVV

VVVVVV

VV

VV

VdbdbdbdbVbdbdRHR

=−=

=−=+−−+=−−−−+=

=−⋅−+=

=−⋅−+⋅=

=⋅−⋅−+⋅⋅=

πσ

πσπσπσ

πσ

πσ

πσφφ

3
1

3
1

9
3

3
1)

9
1

9
2

9
2(

3
1)

3
1,

3
2,

3
1)(

3
1,

3
1,

3
2(

3
1

)]
3
1,

3
1,

3
1()0,1,0[()]

3
1,

3
1,

3
1()0,0,1[(

3
1

)]
3

1,
3

1,
3

1(
3

1)0,1,0[()]
3

1,
3

1,
3

1(
3

1)0,0,1[(
3

1
3

1

)]ˆˆ(ˆˆ)][ˆˆ(ˆˆ[)ˆˆ)(ˆˆ()(ˆ)( 221121,,

rr

 

(32) 

The value will be the same for different pairs because all pairs of nearest-neighbors are 

equivalent with respect to this type of interaction  (the distance between any nearest-

neighbors is the same, the perpendicular orbitals are along (1,0,0), (0,1,0) or (0,0,1) 
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directions and the distance vector is always along or opposite the bisector of the solid 

angle generated by (1,0,0), (0,1,0) or (0,0,1), that is, of the form ),,( MMM ±±± ). 

Various minus signs will appear when )(ˆ)( ,,, iTzpyWpx RRHR
rrr

+φφ  are considered 

because )
3

1,
3

1,
3

1(ˆ ±±±=id .  In the end, it turns out that the Hamiltonian terms are  

of the form 1gExy ,  2gExy , 3gExy  or ∗
1gExy , ∗

2gExy , ∗
3gExy . 

Thus, the values ssE , spE , xxE , xyE  describe all the nearest-neighbor interactions with 

the Hamiltonian. 

 

Comment on the validity of =)
4

,
4

,
4

(ˆ)0( aaaH pxasc φφ )
4

,
4

,
4

(ˆ)0( aaaH pxcsa φφ   

 

This equality is true because interchanging the origin of the lattice from a Ga 

atom to an As atom does not affect the calculations. Symmetry dictates that the 

interaction of an s-As orbital with a px-Ga orbital has the same value as the interaction of 

a px-As orbital with a s-Ga orbital. 

 

Can we write =)0(ˆ)0( scsc H φφ )
4

,
4

,
4

(ˆ)
4

,
4

,
4

( aaaHaaa
sasa φφ ? 

 

No, this is not true, because the interaction of the s orbital in As with itself is different 

from the interaction of the s-Ga orbital with itself, because the Ga and As atoms are 

different (they have different number of protons). 

 

4. Write your trial wave function as a linear combination of atomic 

orbitals. Be explicit about your choice of phase factors. 
 

Trial wave function 

=)(R
r

ψ )(1,1 Ra s

r
φ + )(1,1 Rb px

r
φ + )(1,1 Rc py

r
φ + )(1,1 Rd pz

r
φ + 

+ )(2,2 Ra s

r
φ + )(2,2 Rb px

r
φ + )(2,2 Rc py

r
φ + )(2,2 Rd pz

r
φ + 
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+ )( 12,11 RRa s

rr
+φ + )( 12,11 RRb px

rr
+φ + )( 12,11 RRc py

rr
+φ + )( 12,11 RRd pz

rr
+φ + 

+ )( 22,12 RRa s

rr
+φ + )( 22,12 RRb px

rr
+φ + )( 22,12 RRc py

rr
+φ + )( 22,12 RRd pz

rr
+φ + 

+ )( 32,13 RRa s

rr
+φ + )( 32,13 RRb px

rr
+φ + )( 32,13 RRc py

rr
+φ + )( 32,13 RRd pz

rr
+φ + 

+ )( 41,14 RRa s

rr
+φ + )( 41,14 RRb px

rr
+φ + )( 41,14 RRc py

rr
+φ + )( 41,14 RRd pz

rr
+φ +     (33) 

+ )( 51,15 RRa s

rr
+φ + )( 51,15 RRb px

rr
+φ + )( 51,15 RRc py

rr
+φ + )( 51,15 RRd pz

rr
+φ + 

+ )( 61,16 RRa s

rr
+φ + )( 61,16 RRb px

rr
+φ + )( 61,16 RRc py

rr
+φ + )( 61,16 RRd pz

rr
+φ . 

 

5. Find the Hamiltonian matrix for the nearest neighbor 

approximation. Your answer should contain only Ess, Esp, Exx, Exy, 

the s and p energies of the anion and cation and phase factors. 
 

The elements in the Hamiltonian overlap matrix have already been calculated in part B.3 

for each case of orbital interaction. Putting those results together, the Hamiltonian 

overlap matrix is: 

             〉1| sφ        〉1| pxφ       〉1| pyφ       〉1| pzφ    〉2| sφ       〉2| pxφ       〉2| pyφ     〉2| pzφ  
〉1| sφ      1sE            0              0               0        0gEss       1gEsp        2gEsp    3gEsp  
〉1| pxφ     0              1pE            0               0     1gEsp−      0gExx        3gExy     2gExy  
〉1| pyφ     0               0             1pE             0     2gEsp−      3gExy       0gExx     1gExy  
〉1| pzφ     0               0              0              1pE    3gEsp−      2gExy       1gExy      0gExx  

〉2| sφ    ∗
0gEss     ∗− 1gEsp    ∗− 2gEsp   ∗− 3gEsp     2sE             0              0             0 

〉2| pxφ   ∗
1gEsp     ∗

0gExx       ∗
3gExy        ∗

2gExy      0              2pE           0             0 

〉2| pyφ   ∗
2gEsp      ∗

3gExy      ∗
0gExx        ∗

1gExy      0                0           2pE           0       

〉2| pzφ   ∗
3gEsp      ∗

2gExy      ∗
1gExy        ∗

0gExx      0                0            0            2pE  
(34) 
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where )(ˆ)( 1,1,1 RHRE sss

rr
φφ= , )(ˆ)( 2,2,2 RHRE sss

rr
φφ= , 

)(ˆ)( 1,1,1 RHRE pxpxp

rr
φφ= = )(ˆ)( 1,1, RHR pypy

rr
φφ )(ˆ)( 1,1, RHR pzpz

rr
φφ=  

and )(ˆ)( 2,2,2 RHRE pxpxp

rr
φφ= = )(ˆ)( 2,2, RHR pypy

rr
φφ = )(ˆ)( 2,2, RHR pzpz

rr
φφ . 
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1. Look up a “real” energy band diagram for your material 
The experimentally determined band diagram for GaAs is shown in: Blakemore, J.S. 

Semiconducting and other major properties of gallium arsenide. J. Appl. Phys. 53(10), 

Oct. 1982. 
 
 

2. Write a Matlab program to plot the free-electron band structure 

for your material along the same directions as used in the 

energy band you found in the literature. Indicate the 

degeneracies of the different bands.  Where is the Fermi level 

located? How does the free electron band structure compare to 

the real band structure?  
 

A substantial amount of information can be obtained about the Bloch electron assuming 

the electron experiences zero potential energy. In the free-electron model, we solve the 

Schrodinger’s Equation by setting the potential V(r) to be zero. The solution consists of 

plane waves with a continuous wave vector k and energies given by Eq. (35). The 

relationship between E and k is parabolic. 

2
2

2
)( k

m
kE

vhv
=       (35) 

The free-electron energy bands can be represented in the reduced zone scheme.  The 

wave vector k is reduced to the first Brillouin zone by a suitable choice of reciprocal 

lattice vector G: 

Gkk
vvv

+= '                            (36) 

 

where G is defined by the linear superposition of primitive reciprocal lattice vectors b1, b2 

and b3: 

321 blbqbhG
vvvv

++=      (37) 

 

For a face-centered cubic lattice, it is much more convenient to rewrite G in terms of the 

orthogonal unit vectors: 
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]ˆ)(ˆ)(ˆ)[(2 zlkhylqhxlqh
a

G −+++−+++−=
πv

  (38) 

where a is the conventional lattice constant and is 5.65325A for GaAs.  We can now 

rewrite the energies in the reduced zone scheme notation: 

2
2

)'(
2

)( Gk
m

kE
vvhv

+=     (39) 

where k’ is restricted within the first Brillouin zone.  The corresponding energy band 

diagram for a face-centered cubic is shown in Fig. 8.  The bands from L to Γ were plotted 

in pink, Γ to X in blue, X to (K ,U) in red, and K to Γ in green.  Consider the Γ point with 

k’ = [0 0 0].  The lowest energy band is given by setting G in Eq. (38) to zero (h= q= l= 

0).  The minimum of the point is E = 0 which increases parabolically until it reaches the 

zone boundaries at the X-point on the right ( 2
2

)2(
2 am

E πh
= ) and L-point on the left 

( 2
2

)3(
2 am

E πh
=  ).  The next energy value at the Γ-point occurs by setting either one of 

h, q or l to be +1.  With the same idea, the complete energy bands were computed by 

increasing the indices h, q and l and evaluating E at the different symmetry points.   
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Figure 8: Free-electron band structures along symmetry directions for GaAs. (applied to any face-centered 
cubic structure) The dotted line shows the approximate Fermi energy level at T=0. 
 
The accepted free-electron band structure is shown in: Kittel, C., Introduction to Solid 

State Physics, 1986.  The computed results agree extremely well with literature.  An 

interesting point to note is that we computed the bands from X to U [1 1/4 -1/4] instead of 

X to K [3/4 3/4 0] in order to match the results from the literature. 

 

At zero temperature the Fermi energy for free electrons is given by: 

3/22
2

)3(
2

n
m

EF πh
=                 (40) 

where n is the electron number density.  For GaAs, n ~ 5 x 1022/cm3, and thus EF ~4.9eV.  

The Fermi level is shown in Fig. 8. 

 

The energies are degenerate if different combinations of (h,q,l) give the same energy 

values.  Referring to the Γ point example mentioned before, the next energy value at the 

Γ-point will be 6-fold degenerate since either one of h, q or l being +1 will give the same 

                               L                           Γ                              X     K,U                               Γ 
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energy.  Figure 10 shows the band structure again but with the degeneracy emphasized.  

It should be noted that the free electron structures are highly degenerate. 
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Figure 10: Degeneracy of the free-electron band structure for GaAs. (face-centered cubic) 

 
It is reasonable to compare the free-electron band structure with the real band structure 

(Fig. 7).  The first observation is that although the free-electron band structure gives a 

fairly good approximation to the shape of the bands, it shows no evidence of energy gaps.  

In addition, a lot of the degeneracy is removed in the real band structure.  

 

3. Algebraically diagonalize the Hamiltonian matrix at the G point. 

What are the different energies and eigenvectors, and what do 

they correspond to physically? Using Harrison’s Solid State 

Legend: 
1-fold
2-fold
3-fold
4-fold

                               L                           Γ                              X     K,U                               Γ 
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Table find numerical values for Esa, Esc, Epa, Epc, Ess, Esp, Exx, and 

Exy. 

 
The Hamiltonian matrix was given in Eq. (34). It is reproduced here for the case when 

k=(0,0,0), i.e. at the Γ point. 

 

































=

2

2

2

2

1

1

1

1

0004000
0000400
0000040
0000004

4000000
0400000
0040000
0004000

pxx

pxx

pxx

sss

xxp

xxp

xxp

sss

EE
EE

EE
EE

EE
EE

EE
EE

H         (41) 

 
It is clear that this is a block diagonal matrix and therefore calculations can be done easily 

by hand. To diagonalize a symmetric matrix like this, you use the eigenvalue equation 

HV=VE      (42) 

Where V is a matrix of eigenvectors, and E is a diagonal matrix of eigenvalues, which 

happen to be the energies. Pre-multiplying both sides of the equation gives 

V–1HV=E             (43) 

Thus, diagonalizing the H matrix gives the energies along the diagonal. The eigenvectors 

and eigenvalues for this system can be found from inspection. As an example, to find two 

of the eigenvalues, we solve the pair of simultaneous equations 

Es1ε1 + 4Essε5  = E ε1               (44) 

4Essε1 + Es2ε5 = E ε5               (45) 

This set of equations can be solved analytically for E as 

( ) ( ) ( )
2

164 2
21

2
2121 ssssssss EEEEEEE

E
−−+±+

=    (46) 

Thus, Eq. (45) gives us two values for the energy. Once we have the energy, we can 

calculate the corresponding eigenvectors. We simply substitute the two values of E 
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obtained from Eq. (46) into Eq. (44) and (45) and get two eigenvectors. The results of 

this process are given in Tables 1 and 2 below. Table 1 shows the calculated eigenvalues 

or energies for this matrix along with a comparison with literature values [1]. The 

calculated energy values have been scaled so that zero corresponds to the top of the 

valence band. 

Table 1: Calculated vs Experimental Values for Energy at G point [1] 

Calculated Energy (eV) Measured Energy (eV) 

-12.64 -12.6 

0 -0.5 

0 0 

0 0 

3.12 1.4 

3.12 4.7 

3.12 4.7 

6.42 4.7 

 

The table shows that the calculated and experimental values for the energy levels at the 

Γ point are reasonably close. Table 2 shows the eigenvectors for the energy modes. 

 

Table 2: Calculated eigenvectors for Hamiltonian matrix at G 

φs1 0 0 -0.80 0.60 0 0 0 0 

φpx1 0 0 0 0 -0.82 0.57 0 0 

φpy1 -0.82 -0.57 0 0 0 0 0 0 

φpz1 0 0 0 0 0 0 -0.82 0.57 

φs2 0 0 0.60 0.80 0 0 0 0 

φpx2 0 0 0 0 -0.57 -0.82 0 0 

φpy2 -0.57 0.82 0 0 0 0 0 0 

φpz2 0 0 0 0 0 0 -0.57 -0.82 
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The eigenvectors represent the coefficients by which each of the bases in the finite state 

basis expansion are weighted. It is seen that all of the eigenvectors have only two non-

zero components. We already knew this from before when we demonstrated the 

calculation of energies and eigenvalues analytically. With these eigenvectors, the energy 

can actually be estimated as well because if the eigenvector is mainly weighting one of 

the atomic orbital functions, then the corresponding energy for that eigenvector will 

approximately be equal to the energy of the atomic orbital. 

 
4. Write a Matlab program to plot the LCAO energy bands along  

the same directions as above, along with the approximate 

location of the Fermi level.  How do your results compare 

qualitatively with the band structure you found in the literature?  

Optimize the matrix elements for your material if you wish. 

5. Where are the valence band maximum and conduction band 

minimum located? What is the energy gap? Is your material 

direct or indirect? 
 
The Hamiltonian matrix obtained in part B was used to find the energy bands.  Recall that 

we chose the trial wave function to be a linear combination of 4s, 4px, 4py, 4pz orbitals 

from each Ga and As atoms.  The resulting 8x8 Hamiltonian matrix should give 8 

eigenenergies for each [kx ky kz], thus we expect to get 8 energy bands.  The values for 

the physical parameters used in the computation were from the Solid State table [3] and 

are summarized in Table 3.  The LCAO band diagram along the same symmetry points is 

shown in Fig. 11. The zero energy point was taken to be the maximum of the valence 
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Figure 11: LCAO energy bands for GaAs.  The zero energy point is chosen to be the maximum of the 

valence band (at the Γ point). 
 
The 8 energy bands are best evidenced along the K-Γ direction.  The 3rd and 4th bands and 

the 7th and 8th bands are degenerate for X-Γ and L-Γ.  Although there is a band gap 

between the first two bands, it is not of main interest since they are all filled up and 

doesn’t contribute to the semiconducting properties.  The actual semiconductor gap is 

located between the 4th (valence band) and the 5th (conduction band).  The energy gap is 

the difference between the maximum of the valence band (EV= 0eV) and the minimum of 

the conduction band (EC =2.91eV).  The resulting band gap of 2.91 eV is much higher 

than the accepted value of 1.43eV for GaAs.  This discrepancy naturally posed a need to 

optimize the matrix elements.  We fudged the four overlap parameters Vssσ, Vspσ, Vppσ 

and Vppπ since they are the most crucial matrix elements.  The optimized values are 

summarized in Table 3.   
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Table 3: The numerical values of the physical parameters used in the computation.  The first set was 
obtained from the solid state table [3] and the second set was the optimized values.  The band gaps 
computed with each set of values are also shown.  The values in parenthesis indicate the discrepancy with 
the accepted value (1.43eV) for GaAs.    
 

Matrix 
Elements 

Solid State Table (eV) Optimized (eV) 

Es -11.37 --- Ga 
Ep -4.9 --- 
Es -17.44 --- As 
Ep -7.91 --- 

Vssσ -1.78 -1.70 
Vspσ 2.34 2.60 
Vppσ 4.12 3.44 
Vppπ -1.03 -1.02 

 
Band Gap 2.91 (103%) 1.88 (31%) 

 
 
Taking into account that it is difficult to judge whether the values are optimized merely 

by comparing the band structures qualitatively, the final values we used were based on 

the suggestions from ref. [3].  The improved LCAO band structure is shown in Figure 12.  

It can be seen that the shapes of the band structures agree more with the literature (Fig. 7) 

and the corresponding band gap is 1.88eV.  The discrepancy is reduced from  103% to 

31%.  It should be noted that the optimization process did not only take into account the 

energy gap but also the shape of the bands as well. 
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Figure 12: Improved LCAO energy bands with optimized matrix elements for GaAs.  The locations of the 
valence band minimum and conduction band maximum both occur at the Γ point, indicating that GaAs has 
a direct band gap.  The Fermi energy level at T = 0 is mid-way between the band gap (dotted line). 
 
The Fermi energy level as a function of temperature is given by 

)ln(
2 Nc

NvkTEvEcEF +
+

=          (47) 

where k is Boltzmann constant, Nv and NC are the degeneracy at Ev and Ec respectively. 

At zero temperature, it is mid-way between the energy gap and is approximately EF0 

~0.94eV with Ev being the zero energy point.  At higher temperature, it will be slightly 

shifted towards the valence band. 

The energy bands obtained using the LCAO method compares well with the real 

energy bands.  The LCAO approach is particularly useful in providing information about 

the presence and location of the energy gaps, and the general trend of the bands.  

However its limitation lies in the inability to predict some band features including the 

dips and also the fine separation of some of the nearly degenerate bands. 

Nevertheless, the LCAO band diagram accurately predicts the locations of the 

valence band minimum and the conduction band maximum; they both occur at the Γ 

point.  Therefore GaAs is a direct band gap material, with a band gap computed to be 

1.88eV (31% discrepancy). 

                                 L                          Γ                               X          K                              Γ 
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Nevertheless, the LCAO band diagram accurately predicts the locations of the 

valence band minimum and the conduction band maximum; they both occur at the Γ 

point.  Therefore GaAs is a direct band gap material, with a band gap computed to be 

1.88eV (31% discrepancy). 
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1. Plot constant energy contours near the valence and conduction 

band edges for “appropriate” planes. Fig13, Eq48  
 
The constant energy contours along selected planes are shown below.   Since the 

maximum energy in the conduction band and the minimum energy in the valence band 

occur at Γ = (0,0,0) for our direct material, a plot of the energy contours along the kx-ky 

plane (kz=0) and along the kx-kz plane (ky=0) will be a suitable choice to capture the 

energy content about the band gap of our material. 
 
 

 

 

 

 

 

 

 

 

Figure 13: Constant energy contours along selected planes 

 

2. Solve for the energy at a number of k points near the valence 

and conduction band edges. Fit these points using a quadratic 

polynomial. Use your results to find the effective masses for 

both the valence bands and the conduction band. How do your 

results compare with results from the literature? How would you 

improve your results? 
 
In general, a quadratic fit near the conduction band minimum is in the general form  
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For GaAs, simplifications may be made by taking the cubic symmetry into account 

(mx
*=my

*= mz
*= mc

*) and by noting that the conduction band minimum occurs at  

(kx0, ky0, kz0)=(0,0,0). This results in Eq. (49) 

))()()((
2 *
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*

2

*
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c m
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m
k

m
kEE +++=

h     (49) 

For simplicity, the effective mass is calculated by fitting the energy dispersion relation 

along the Γ-X direction, which results in the following simplified equation 

))((
2 *

22

c

x
c m

kEE h
+=      (50) 

Choosing an appropriate value for the effective mass results in a quadratic polynomial fit 

as is shown below for the conduction band 

 

 
Figure 14: Conduction band effective mass 

where  mc is found to be 

0
* 2. mmc =          (51) 

Similarly, the quadratic polynomial fit for the valence bands is written in general  

))()()((
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Using the same simplifications as in the conduction band, 

))((
2 *

22

v

x
v m

khEE −=      (53) 
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The effective mass constants fitted for the valence band maximums are found to be  

0
* 33. mmv =  

0
*

2 15. mmv =           (54) 

0
*

3 41.1 mmv =  

 

 

 

 

 

 

 

 

    a) mv1*                 b) mv2*         a) mv3* 

Figure 15: Valence band effective mass 

 

In comparing the calculated values with the literature, one finds that the effective masses 

obtained by using the LCAO method does not closely match the experimental results. A 

table from Harrison, W. A., Electronic Structure and Properties of Solids, Freeman, 

(1980) shows typical experimental and theoretical values. 
 

In providing an explanation for the discrepancy, we will suggest that the nearest 

neighbors LCAO method could be improved by allowing for more trial wavefunctions by 

choosing next nearest neighbors. This would allow for more curvature in the energy band 

dispersion relationship, and therefore improve the estimation for the effective mass 

calculations. 
Table 5: Valence band effective mass 

Effective Mass Literature Values [1] Calculated Values 
Conduction Band mc0 = 0.067m0 mc=.2 m0 
Light Hole Band ml = .082 m0 ml = .33m0 
Split Off Band ms0=0.154 m0 ms0=0.15 m0 

Heavy Hole Band mh = 0.51m0 mh = 1.41m0 
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3. Plot the total density of states versus energy. Use your 

calculated effective masses to determine an approximate 

expression for the density of states near the valence and 

conduction band edges. How does this calculation compare 

with the total D.O.S.? 
 
Figure 16 shows the calculated density of states using the histogram method. 

 

 
Figure 16: Density of States 

An approximation for the total density of states could be made by using the calculated 

values for the effective mass in the conduction and valence band and the equations shown 

below 

22

** )(2
)(

h
EEmm

Eg ccc
c π

−
=          (54) 

3/22/3*
2

2/3*
1

* ])()(2[ vvveff mmm +=             (55) 

22

** )(2
)(

h
EEmm

Eg vveffveff
v π

−
=             (56) 

The 2 in front of the first term results from the fact that the first band is doubly 

degenerate [5] 
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Using our calculated values for mveff
 * = .576 and mc

* = .2 m0, we obtain the plots 

shown in the figure below where the solid lines represent the analytical expression using 

the calculated effective masses. 
  
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 16: Density of states near the conduction and valence band edges  

and effective mass approximation 

 

 

 

 

 

 

4. Using your total D.O.S., calculate the electronic specific heat of 

your material as a function of temperature. Compare this with 

your calculations for the phonons, and comment. 
 

In calculating the specific heat of GaAs, a numerical integration technique is utilized in 

order to use the numerical density of states. First, the expected value of the energy is 

found from 

dEEfEEg
V
E )()(∫>=<        (57) 
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Noting that the Fermi distribution function has an explicit temperature dependence, as 

well as an additional implicit temperature dependence in the Fermi energy level itself 

Tk
EfE

be
Ef −

+

=

1

1)(              (58) 

 

where the Fermi energy is approximately given by 

)ln(
2 c

vvc
f N

NkTEEE +
+

=        (59) 

and  

2
3

2

*

)2(2
h

kTmN v
v

π
=               (60) 

2
3

2

*

)2(2
h

kTmN v
c

π
=               (61) 

The electronic specific heat is shown in Figs. 17 and 18 over different temperature 

ranges. It is still unclear to us what the relevant temperature range should be and how the 

exact specific heat calculation should be done. Initially, we tried to calculate the energy 

density using the valence and conduction bands. However, this appeared to give us a 

specific heat of zero due to some type of cancellation. Then, upon the (perhaps nebulous) 

advice of a former student, we tried calculating the specific heat using only the 

conduction bands. This idea seemed to make sense because the valence band is pretty 

much full, so there is not much room for the valence electrons to increase in energy while 

still staying in the valence bands. The conduction band electrons, however, have access to  

a seemingly infinite number of free states to which they can be excited by thermal 

energy. Therefore, the specific heat was calculated using only the conduction band 

density of states. Perhaps this approximation becomes less valid as the temperature 

increases and there are a greater fraction of available states in the valence bands, 

implying that the specific heat due to valence band electrons cannot be ignored. 

We expect the semiconductor to behave as an insulator at low temperatures and a 

conductor at high temperatures. In an insulator, there are no available energy levels to 

which electrons can transition (that are of the same order of magnitude as the thermal 

energy). Therefore, the electronic specific heat should be zero for the insulator. In a 
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metal, the electronic specific heat has a linear variation with temperature. We therefore 

expect that the electronic specific heat will start at zero and become linear at some point.  

Initially, we plotted Fig. 17 shown below.  

 

 
Figure 17: Electronic specific heat up to 300K 

 
From this plot, it seemed like the “knee” for the transition between nonzero specific 

heat and linear specific heat occurred around 275K. In order to compare the electronic 

specific heat to the phonon specific heat, we decided to plot over a much larger 

temperature range. This plot is shown as Fig. 18. Figure 18 seems to indicate that the 

“knee” is around 2500K. Upon some consideration, this latter temperature seemed 

more reasonable because 2500K ~ 0.2 eV and the bandgap is on the order of an 

electron-Volt. 
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Figure 18: Electronic specific heat up to 1000K 

 

We already know that the phonon specific heat dominates over the electronic specific 

heat for high temperatures. We also know that the total specific heat saturates at high 

temperatures. Obviously then, the electronic specific heat cannot continue to grow 

indefinitely. In a metal, the phonons freeze out below some temperature and only 

electrons contribute to total specific heat. Here, however, it seems that the electrons 

also “freeze out” because they are virtually all in the valence band and do not have 

enough energy to jump into the conduction band. So, it is not necessarily true that 

electrons are dominant for very small temperature either, even though the phonon 

specific heat displays a T3 dependence around T=0. However, these are issues that the 

authors have not fully understood at this point. 

 

5. Use the band structure you found in the literature to discuss the 

characteristics of your material. What electronic / optical 

applications would your material be good / bad for? Why? 
 
There are two main characteristics of the GaAs band structure which can be exploited for 

electronic and/or optical applications. They are the fact that GaAs has a direct bandgap at 

Γ and that the effective mass of the electron is far less than it is for silicon (0.067m 

compared to 0.19m for light electrons in Si). In addition, the light holes in GaAs are 

0.074m compared to 0.16m for Si. 
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 A direct bandgap occurs when the minimum of the conduction band occurs at the 

same point in k-space as the maximum of the valence band. In semiconductors with a 

direct bandgap, an electron can make a transition from the valence band to the conduction 

band with simply a change in energy. In indirect bandgap semiconductors, the electron 

must also change its momentum when it transitions. In indirect bandgap semiconductors, 

a third particle is required for momentum conservation. Silicon has an indirect bandgap. 

Because only an energy change is required for direct bandgaps, an electron can make 

transitions between the conduction and valence bands by emitting or absorbing a single 

photon. No other particles are needed. For this reason, GaAs is a very useful material for 

making light-emitting or light-detecting devices. Thus, GaAs is often used for LEDs as a 

light source and CCDs as a light detector. 

 The effective mass of electrons and holes in GaAs can also be exploited for 

commercial purposes. Since the charge carriers are “lighter” than they are in silicon, one 

would suppose that they could be accelerated faster and perhaps to higher velocities 

(although the latter does not necessarily hold). However, it does turn out that GaAs has a 

higher electron mobility than silicon by a factor of six and a half. The increased mobility 

allows for faster electronics because electrons move through transistor channels and 

junctions much quicker. In practical terms, this corresponds to faster switching speeds for 

digital electronics and higher operational frequency for both analog and digital 

components. Indeed GaAs is very commonly used for applications that place such 

demands. 

 

6. Plot the 3D constant energy surfaces near the top of the 

valence band and bottom of the conduction band. 
 
The figure below shows constant energy surfaces near the bottom of the conduction band. 
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