Lecture 16: Type Il Superconductors
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1. A Superconducting Vortex

2. Vortex Fields and Currents

3. General Thermodynamic Concepts
e First and Second Law
e Entropy

e Gibbs Free Energy (and co-energy)

November 3, 2005 4. Equilibrium Phase diagrams

5. Critical Fields
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Fluxoid Quantization and Type Il Superconductors

Images removed for copyright reasons.

Please see: Figure 6.1, page 259, from Orlando, T., and K. Delin. Foundations of Applied
Superconductivity. Reading, MA: Addison-Wesley, 1991. ISBN: 0201183234.
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The VVortex State

B — CD n,, is the areal density of vortices, the
< > ny=v number per unit area.

Image removed for copyright reasons.

Please see: "A current-carrying type Il superconductor in
the mixed state" from http://phys.kent.edu/pages/cep.htm

Image removed for copyright reasons.

Please see: Figure 6.2a, page 262, from Orlando, T.,
and K. Delin. Foundations of Applied Superconductivity.
Reading, MA: Addison-Wesley, 1991. ISBN: 0201183234.
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Quantized Vortices

Fluxoid Quantization along C,

nq>o=f oA Ts. dl+/ B- ds
1 S1

But along the hexagonal path C, Bis a
mininum, so that J vanishes along this path.

Image removed for copyright reasons. :
Therefore, NP, = /S B.ds
Jo1

Please see: Figure 6.2b, page 262, from Orlando, T., . .
and K. Delin. Foundations of Applied And experiments give n = 1, so each vortex

Superconductivity. Reading, MA: Addison-Wesley, has one flux quantum associated with it.
1991. ISBN: 0201183234.

Along path C,, b, = %C ,LLO)\QJs- dl + /S B.ds
> 2

lim J ®o_1;
) = T2 =4
For small C,, Po = r“_% %Cg HoN*Js-dl |:> ro0" " 27 peA2 T ¢
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Normal Core of theVortex

P, 1.
9 7y .
27110 22 ¢ diverges near the vortex center,

The current density lim Js =
r—0

Which would mean that the kinetic energy of the superelectrons would also diverge.
So to prevent this, below some core radius & the electrons become normal. This
happens when the increase in kinetic energy is of the order of the gap energy. The
maximum current density is then

h 1
P, max
Jmax — 27ru0>\2 § i |:‘> — E 1¢

In the absence of any current flux, the superelectrons have zero net velocity
but have a speed of the fermi velocity, v.. Hence the kinetic energy with
currents is
0 L w2 1 .2 102 42
kin — 2 F — 2 Fx Fy Fz
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Coherence Length &

The energy of a superelectron at the core is
I N max 2
@ Ekin =5m |:UF,:E + (’UFy + v ) + UF,z}

The difference in energy, is to first order in the change in velocity,

o max
¢ ~m ’UF,yUS@ ~ A

7 hvp
with v = — = 1 this gives & ~
%’s 5 g 3 2N
. hup
The full BCS theory gives the coherence lengthas &, =
TN
Therefore the maximum current density, known as the depairing current density, is
J ~ Do
depair ~ 277#0)\25
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Temperature Dependence

Both the coherence length and the penetration depth diverge at T

Jim, &(T) = O lim AT) = AO)

V1= (T/Te) T—T. V1-=AT/T:)

But there ratio, the Ginzburg-Landau parameter is independent of
temperature near T A

KR

£

Kk < 1/\/5 Type | superconductor ~ Al, Nb

Il

K> 1/\/5 Type Il superconductor  Nb, Most magnet materials « > 1
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Vortex in a Cylinder

London’s Equations hold in the superconductor
1 b"x V x (AJs) = —B
With Ampere’s Law gives

1
L, V2B(r) — pB(r) =0 for r > ¢

-

Because B is in the z-direction, this becomes a scalar Helmholtz Equation

v 1

N VQBZ—?BZ:O for r> ¢
Please see: Figure 6.4, page 269, from Orlando, T.,
and K. Delin. Foundations of Applied

B:(r¢) = Y. Km (;) (cm cosme + Ch, sinm¢> Superconductivity. Reading, MA:
Addison-Wesley, 1991. ISBN: 0201183234.

XD s i
20 I (;) (D cosme + D, sinmg) Image removed for copyright reasons.
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Vortex in a cylinder

Which as a solution for an azimuthally symmetric field

T
CoKo <X> for > & Image removed for copyright reasons.

3 Please see: Figure 6.5, page 271, from Orlando, T
Ch K, > for - Flg -9, pag ) L
070 <)\> r<¢ and K. Delin. Foundations of Applied

Superconductivity. Reading, MA: Addison-Wesley,
1991. ISBN: 0201183234
C, is found from flux quantization around the core,

o ®, [1e2 ey & e\t
CO_W[Q,\?KO (3) + 35 (x)}
Which for x> 1 b
Co=—
0 272
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Vortex in a cylinder k >> 1

O]
20 Ko (f> o forr>¢
B(r) = 27 A
O 13
Ky (X) i forr<¢
Images removed for copyright reasons.

Please see: Figure 6.5, page 271, from Orlando, T.,
and K. Delin. Foundations of Applied
Superconductivity. Reading, MA: Addison-Wesley,
1991. ISBN: 0201183234.

r
— = Ki{—-)1i, forr>

Js(r) = 27 o3 1 <>\> ' r=¢
0 for r < &
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Energy of a single Vortex

The Electromagnetic energy in the superconducting region for a vortex is

W

- 2/1LO -/Vs {Bz + pods - (/\Js)] dv

This gives the energy per unit length of the vortex as
®32 ¢
o= oo )
V' ampor2 O\
In the high x limit this is

®2 A
liméy =—2—=In| >
A>E 4 po)2 I3
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Modified London Equation k >> A/E

Given that one is most concerned with the high « limit, one approximates
the core of the vortex & as a delta function which satisfies the fluxoid
quantization condition. This is known as the Modified London Equation:

V x (AJs) + B = V(r)

The vorticity is given by delta function along the direction of the core of the vortex
and the strength of the vortex is @,

For a single vortex along the z-axis:

V(r) = ®,65(r)i,

For multiple vortices

V() =) doda(r —1p)is
P
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General Thermodynamic Concepts

First Law of Thermodynamics: conservation of energy

AU = dQ + dW — fydn
Internal energy Heat in E&M energy stored  yyork done by the system
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W: Electromagnetic Energy

Normal region of Volume Vn Superconducting region of Volume Vg
1 .0 1 2
= B2 du W = / B Js - (AJs)] dv
n M 2#0 s 2#0-‘@{ +/«Lo s ( S)]

In the absence of applied currents, in Method 11, we have found that
AW = /V H - dBdv

Moreover, for the simple geometries H is a constant, proportional to the applied field.
For a H along a cylinder or for a slab, H is just the applied field. Therefore,

dW:H-d/ B dv
14
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Thermodynamic Fields

dW:H-d/ B dv
VvV

7—_2 =H thermodynamic magnetic field
- 1 . .
B=—/ B thermodynamic flux density
Vv
- 15 . - .
M=—B-—-H thermodynamic magnetization density
Ho

Therefore, the thermodynamic energy stored can be written simply as

dW = V'H - dB
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Entropy and the Second Law
The entropy S is defined in terms of the heat delivered to a system at a temperature T

dSE@
T

Second Law of Thermodynamics:
For an isolated system in equilibrium AS =0

The first law for thermodynamics for a system in equilibrium can be written as

dU =TdS + VH-dB — fpdn

Then the internal energy is a function of S, B, and n
U=U(S,B,n)
T,H, fn Conjugate variables
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Concept of Reservoir and Subsystem

. . T, 'H
Because we have more control over the conjugate variables =’ ™ I
rewrite the thermodynamics in terms of these controllable variables.

, We seek a

Isolated system = Subsystem + Reservoir
ASiot = AS4 + ASp

The change in entropy of the reservoir is
AQr _ AQyu

Image removed for copyright reasons. ASp =
Tr Tr

Please see: Figure 6.12, page 286, from Orlando, T.,
and K. Delin. Foundations of Applied Trh ASy, — A

ivi A Therefore, ASier = —1—-4 Qa
Superconductivity. Reading, MA: Tr
Addison-Wesley, 1991. ISBN: 0201183234.

TRASA — AUy + VHp - AB — frAn
AStot = Tn
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Gibbs Free Energy

The change total entropy is then

—AG s — frAA
AStot = f’_]I’R InAn >0

where the Gibbs Free Energy is defined by

Ga=-TrSa+Us—VHp-B

At equilibrium, the available work is just AG
(the energy that can be freed up to do work) Free Energy of subsystem
decreases

and the force is

oG AG <0
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Gibbs Free Energy and Co-energy

The Gibbs free energy is
G=-TS+U-VH-B

The differential of G is Lo oL
dG =-TdS — SdT"+ dU — VdH-B — VH-dB

and with the use of the firstlaw dU = T'dS + VH -dB — fndn
dG = —8dT — VB-dH — fydn

Therefore, the Gibbs free energy is a function of 1", H, 7

At constant temperature and no work, then dG‘T,n = —dW the co-energy
oG oW -
=== _="| . Note minus sign!
omlrA A
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Gibbs Free Energy and Equilibruim

In Equilibrium AG =0

Consider the system made up of two phases 1 and 2

¢« ¢ @&

= - Vi V2
Phasel, G=G;,  Phase2, G=G, Mixed phase  G'rot = GIV + GQV

V;
Therefore,  Gior = (G1 — Go) 71 + G is minimized when G1 = G2

Two phases in equilibrium with each other have the same Gibbs Free Energy
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Phase Diagram and Critical Field

AG < 0 So that G is always minimized, the system goes to the state of lowest
Gibbs Free Energy. At the phase boundary, Gs = Gn.

A
H
Gs>Gn At zero magnetic field in the
—— Nurmal superconducting phase
Gs=Gn » )
\\\ Gs(H,0) < Gn(H,0)
Meivsner \\ for T< TC
\\ 1
Gs<Gn \ Gs(0,T) = Gn(0,T) = =~ poHZ(T) Vs
T, "

condensation enegy
The Thermodynamic Critical N2
Field Hc(T) is experimentally ~ _ (_) <
of the form He(T) & Heo | 1 Te for T'<Te
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Critical Field for Type |

Recallthat dG = -V B-dH

In the bulk limit in the superconducting state =0 sothat dGs =0

—

Likewise in the normal state 4 = Happ and B= uoﬁ so that
dGn = —VuoH - dH
Hence, we can write @ (Gs(ﬁ, T) — Gn(H, T)) =V poH - dH
Integration of the field from 0 to H gives
G, TY=Cn(F, T) = G0, T) = G0, )+, VisoH-

and thus 1
Gs(H,T) = Gn(H,T) = po (H* = HZ) V
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Critical Fields for Type Il

" The lower critical field H, is the phase boundary
where equilibrium between having one vortex and
e no vortex in the superconducting state.
T Normal
GL(H,T) = 690, T) + Wy — ﬁ/ Bdv
Vortex \\ Vs
\\/ — — LY_)
VAT o) El oL,
Meissner T N
AS| e/ Therefore
T
_ EV _ P, 3
Ho= g = gra Ko (5
q)o 47T/110A
The upper critical field H., occurs when the
flux density is such that the cores overlap: In\/¢
P,
Ho=——+
¢ 27T,Uo§2
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