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By Brian Taff (with acknowledgement to Feras Eid and Xue'en Yang)   Due: Lecture 9 
 
Problem 9.14 (2 pts):  Bending of an AFM Cantilever 
 
For  LPCVD stoichiometric silicon nitride, E = 270 GPa. 
From the lecture on structures, for a cantilever with the following configuration and loading 
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the differential equation of beam bending is:    
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where M is the internal moment at distance x:     M = -F (L-x) 
 
and  I is the moment of inertia of the cross section at the distance x. For a rectangular cross section:  
                                                                   

      I = bh3/12  
 
For our case, h = 0.5 μm and b is a function of x due to the triangular shape of the cantilever. 
 

For our geometry:                                                 
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Integrating twice:                                            2
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Applying the boundary conditions: w(x=0) = dw/dx (x=0) =0, we get:  A = B = 0.  
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b    a = 50µm

L= 250µm
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At the tip (x = L), the deflection is:                
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And the equivalent spring constant is:             
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For a tip deflection of  2 μm:                          6 -( ) 0.018 2 10  3.6 10w LeqF k N−⋅ == ⋅ =x x  

And the maximum stress at the support is:      ( )
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Problem 14.12 (2 pts):  Circuit loading 
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a) Assuming we have an ideal op-amp 
            
           i+ = 0     V+ = Vs 
           i- = 0      V- = V1,  i1 = i2  
 
           and    V+ = V-   Vs = V1 
 
    
         Also  V1 =i1 R1 , VL = i1 ( R1 + R2 ) 
 
         Therefore  VL / Vs = 1+ R2 / R1 
          
 
 
 

b) Assuming again we have an ideal op-amp 
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           i- = 0        is = iL  
 
           and    V+ = V-  = 0  
    
         Also  V- - VL = iL R1 , Vs - V-= is ( Rs + R2 ) 
 
         Therefore  VL / Vs = - R1 / (Rs + R2 ) 
         
         The ratio is negative, hence the name "inverting". 
 
 
     c) The gain G is defined as the ratio of the output voltage to the input voltage, or VL / Vs. 
 
          For the non-inverting amplifier:  Gideal = 1+ R2 / R1 = Gactual  for all values of Rs       

     Gactual / Gideal  = 1 
           
          For the inverting amplifier:         Gideal = - R1 / R2                                

     Gactual / Gideal  =  R2 / (Rs + R2 ) 

 
Thus for the non-inverting amplifier, the ideal and actual gains are always equal, while for the inverting 
amplifier, the actual gain approaches the ideal gain only when the sensor impedance approaches zero 
(assuming both amplifiers are ideal). Clearly, the non-inverting amplifier is less sensitive to changes in Rs than 
the inverting one. 
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Problem 9.13 (3pts):  Leveraged Bending with Electrostatic Actuation 
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a) The governing equation for the deflection of a doubly clamped beam 
under a point load as shown in the figure is, 
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where denotes a concentrated load at a.  Integrating, we 
have, 
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Apply the boundary conditions 
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we get, 
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Hence, the center deflection is, 
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If we next examine the effect of the point load acting at the right hand side of the beam (acting alone as if 
the load at “a” had been removed), we get a similar setup. 
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Applying the boundary conditions 
                                                       , (0) ( ) '(0) '( ) 0w w L w w L= = = =
we get, 
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In this case, the center deflection is: 
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Applying superposition to the beam, we can obtain the center deflection due to both loads to be, 
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Problem 5.9 (2 pts): Circuit representation of a lumped mechanical system 
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In the  convention, the flows are the time derivatives of the displacements xi of the different bodies, and 
effort is the external force.  Since k1 and b1 share the same displacement, and hence, the same flow, they are in 
series.  The same holds for k2 and m2 and also for k3 and m1.  By observation, the net flow through b1 is 

e V→

)( 12 xx − .  
Hence, the equivalent circuit can be represented as shown in Figure.  
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Apply KVL for the left loop, we have 
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Apply KVL for the right loop, we have 
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Substitute into (1), we have,          
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