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Problem 6.5 (5 pts): The in-plane interdigitated electrostatic (or comb drive) transducer 

a). Current drive case 

The gap g between the finger tip and the electrode can be expressed in terms of the displacement z as follow, 
g = g0 − z 

The effective capacitor length is hence, l − g = l − g0 + z . The capacitance of the upper part of comb is (by 
neglecting the electric fields around the finger tip), 

0(l g t  )ε −C = upper h 
Since the one-finger model is equivalent to two capacitors in parallel (upper and lower parts), the total capacitance is 
multiplied by two,  

2 (ε 0 − )l g t  C = 
h 

The energy stored in the system is 
Q Q 2 

W = vdQ  =
QdQ  =

Q
∫ ∫  C 2C 
0 0 

Substitute C into the equation above, we have 
hQ2 

W = 
ε0 l g t  4 (  − ) 

The force becomes 
⎛ ∂W ⎞ Q2 hF = ⎜ ∂ ⎟ = 2
⎝ g ⎠Q 4 ε0t l( − g) 

To find the gap, we have 
F = kz = −k(g − g0 ) 

2F  Q h  g g0 g0 2⇒ =  −  =  −  
k 4ε0tk  l  ( − g) 

The voltage can be expressed as, 
⎛ ∂W ⎞ hQ  v = =⎜
⎝ ∂Q ⎠

⎟ 
g ε02 (t l  − g) 
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b). Assumptions made in calculating the force in a). 
a. The upper and lower gaps of the comb fingers are exactly the same as fabricated 
b. Fringing effects are neglected.  
c. The energy stored between the finger tip and the electrode (gap g) is neglected. 
d. The electrical permittivity of air is assumed to be the one of free space.  
e. There is no space charge in the space between the plates. 
f. The actuation of the comb drive is quasi-static.  
g. Charge distributed uniformly on the plates 

c). Voltage drive case 
We can use co-energy to find force and charge. 
 The co-energy in the capacitor is 

W *( ,  )  = 
V 

∫Qdv = 
V 

∫Cvdv Cv 
2

2 ε0 (l g tv  − 

h 
) 2 

v g = = 
0 0 

The force 
⎛ ∂W * ⎞

F = −⎜⎜ ∂ 
⎟⎟

⎝ g ⎠V 

ε 0tv
2 

F = 
h 

And the charge 
⎛ ∂W * ⎞

Q = ⎜⎜ ⎟⎟
⎝ ∂v ⎠g 

Q = 
2ε 0 (l − g)tv 

h 
To find the gap, we again have 

F = kz = −k(g − g0 ) 

ε tv2 
0 

h 
( − g 0 )= −k g  

g g  − ε0tv
2 

= 0 kh 
d). The net force for the voltage drive case: 

Fnet = −
ε 0 

h
tv2 

+ K (g0 − g) 

∂Fnet = −k < 0 
∂g 

The effective spring constant is a negative constant, which means the increase in gap will cause the decrease in 
force, therefore, the system is always stable and there is no spring softening/hardening. 

e). The net force for the current drive case: 

Fnet = −
Q 
4

2 

ε 0t(l
h 
− g)2 + k(g0 − g) 

2 
net ∂

∂ 

F
g 

= keff = −  
ε0 

Q h  
3 − k < 0 

2 (t l  − g) 

  The effective spring constant is also negative, however, it’s not a constant.  Since g always decreases from g0 to 
0 when actuation starts, decreases as the comb drive is actuated, creating the spring softening effect.  However, keff 

since keff is always negative regardless of the value of g, the system is always stable, and hence, no pull-in will 
occur.  This conclusion is based on the assumption that the electric fields around the fingertips are negligible.  Also, 
it is assumed that the upper gap and lower gap of the comb fingers are the same, while in reality, they might vary 
due to nonuniform etching or other fabrication effects. Pull-in, hence, can occur due to these secondary effects. 
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Problem 6.9 (2 pts): Design the spring 

Since we have 2 springs in parallel (as shown in the figure), the effective spring 
constant of each is keq = k parallel/2 = 0.5 kN/m 

Each spring acts as a beam with a fixed support at one end (the anchor) and subjected at the other end to a zero slope 
boundary condition (because of its connection to the mass), despite its ability to translate. This BC imposes a 
moment reaction at the other end. Hence the resultant deflection is the superposition of 2 tabulated deflections: that 
of a cantilever beam subjected to a point force at its end and that of a cantilever beam subjected to a moment at its 
end. The moment is unknown yet, and will be found by substituting the zero-slope BC into the resultant deflection 
profile.  

2F 3 2For a cantilever (length L, width a, thickness t) with point force F at the end: ˆ1( )  = (−x + 3x L  )w x  
Eta 3 

For a cantilever (length L, width a, thickness t) with a moment M at the end: ˆ 2 ( )  = 
6M 

3
2w x  x

Eta 

The resulting deflection is thus: ˆ ( )  ŵ x ˆ x 2F 
3

3 2 6M 2w x  = 1( )  + w2 ( )  = (−x + 3x L  ) + 3 x
Eta Eta 

Using the boundary condition, 

dw x ˆ ( )  ⎛ 2F 12  M ⎞ 
⎜ 3 ( 3x2 + 6xL  ) + 3 x ⎟ = 0= −

dx ⎝ Eta Eta ⎠x L  x== L 

we can solve for M and find: 
FLM = −  
2 

We then plug back into our deflection equation to find: 

ˆ ( )  = 
2F 

3 (−x3 +1.5  2w x  x L  )
Eta 

Springs 
Evaluating at x=L provides: 

FL3 

ˆ ( )  = 3w L  
Eta 

We can then solve for the equivalent spring constant. 

F Eta 3 

k = = eq 3ˆ ( )  Lw L  

Subsituting E ≈ 150 GPa, a = 10 µm, and t = 200 µm, we get: L = 310.7 µm. 
We can fit such a long spring into a minimal wafer area by folding it, as shown:

 Mass 
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A 
kg 

cap27 
8 3 

ε

Problem 6.10 (7 pts): Design a simple switch 

(a)  	Using t, l, w , and g in [m] to avoid confusion, and all other parameters in standard SI units: 

•	 VPI = = 10V  -------(1) 

(assuming electrical force applied as point force at tip) 
Ewt 3 

•	 k = 3  ------------(2) 

4l


(assuming ideal cantilever support) 
•	 Acap = lo w ------------(3) 

(assuming capacitor area does not vary much as switch is deflected) 

1 l


•	 R = ≤ 10Ω  ----------(4) 
σ wt 

(assuming changes in length and width of cantilever between  the closed and open switch modes are 
negligible) 

•	 l ≥ 5w ------------(5) 
•	 w ≥10t  -----------(6) 
•	 Cost constraint: lw× 200×106$ / m 2 + (t − 2×10−6 ) ×u(t − 2×10−6 m)× 2×106$ / m ≤1$ -------(7) 

(u is the unit step function, since we start paying for the thickness once it exceeds 2 µm, according to 
the problem statement). 

(b) 	Substituting E = 150 GPa, σ = 105 S/m, ρ=2300 kg/m 3, l0 = 10 µm, and ε = ε0 = 8.854 x 10 -12 F/m (i.e. 
assuming the gap is vacuum), we get: 

gt 
= 9.2712 ×10−9 m --------- (A)    (from (1), (2), and (3)) 

l 
l 
≤ 106 m−1 ----------(B) 

wt

l

≥ 5	  ----------(C) 

w 

Combining (B) and (C) yields the following relation: 

l5 ≤  ≤ ⋅  t 10  6 m−1 

w 
5 ≤ ⋅t 10  6 m−1 

5 10  × −6 m t≤ 

Therefore, from physical constraints alone tmin = ×5 10  −6 m = 5µm 

Because we are forced to use a beam thickness greater than 2 µm, in the cost function the term that involves the step 
function is in the “active” state.  We therefore find ourselves in a linear regime where any increases in the beam area 
and/or the beam thickness beyond prescribed physical minima will add to the cost of the part. 

From (A), l = gt / 9.2712×10−9 . The l corresponding with the tmin of 5 µm and the minimum gap (0.5 µm) is given 

by:  	lmin = 0.5×10 −6 ×5×10 −6 /(9.2712×10 −9 ) = 2.696×10−4 m ≈ 270µm . 
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l 
≤m w  

t ⋅106 

The w follows from (B): 
270×10 −6 

−6m = 54×10 m ≤ w
(5 10  × −6 ) ⋅10  6 

The smallest w we can have and still satisfy all of the physical constraints associated with the problem is therefore: 

wmin = 54×10−6 m = 54µm 

We also know from (6) that the condition w ≥10t must be satisfied.  Since tmin = ×5 10  −6 m = 5µm and 

wmin = 54×10−6 m = 54 µm  , this last condition is met, and we have therefore found our design values. 

Thus  g = 0.5µm, t =5µm, w = 54µm, l = 270µm. Substituting into equations (1)-(4) and (7), we get: 

Vc= 9.98 V, R = 10Ω, and the minimum cost is: 54 × 270 × 200 ×10−6 + (5 − 2) × 2 = 8.92$ 

(c) Process:  (Note that the actual dimensions of the device are slightly larger than those of the cantilever. Hence 
the cost will be slightly higher than that calculated above. 

1.	 Start with a silicon wafer, perform RCA clean with HF dip. 
2.	 LPCVD 0.2 µm of silicon nitride to act as insulator between the electrode and switch along the 

substrate path. 
3.	 LPCVD 0.2 µm of polysilicon. 
4.	 Perform photolithography using positive photoresist (not shown) and Mask 1 to define the 

electrode. 
5.	 Dry-etch the polysilicon using reactive-ion etching. Then ash resist and perform RCA clean 

(without HF dip). 
6.	 PECVD 0.5 µm of sacrificial oxide 
7.	 Perform photolithography using positive photoresist (not shown) and Mask 2 to pattern the 

sacrificial layer. 
8.	 Wet-etch the oxide using BOE. Then ash resist and perform RCA clean (without HF dip). 
9.	 LPCVD 5 µm of polysilicon. 
10.	 Perform photolithography using positive photoresist (not shown) and Mask 3 to define the 

cantilever. 
11.	 Dry-etch the polysilicon using reactive-ion etching. Then ash resist and perform RCA clean 

(without HF dip). 
12.	 Release the cantilever by etching the oxide with BOE followed by super-critical freeze drying. 
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Figure 1. Process flow and mask set for micromachined cantilever switch 

Problem 6.11 (7 pts):  A simple MEMS resonator 
 (a) For a doubly clamped cantilever beam, the effective spring constant is:  

k = 
16Ewt 3 

(See p. 690 in Gere & Timoshenko, Mechanics of Materials, 4th Ed.) 
l 3


mactual = ρ lwt 

  The mass is : 


meff = 0.4mactual


8kgo 
3 8×16Ewt 3 go 

3 128Et 3 go 
3 

  The pull in voltage is  VPI = = 3 = 3  -------- (1) 
27εAcap 27ε lelec wl 27ε lelecl 

(b) Based on the linearized model in the text: 

εA ε l w V 2C 2 V 2ε l w C V ε l wV
C0 = 

cap = elec , k '= k − o o = k − o 
3 
elec , and φ = o o = elec 

2 
o 

ĝo ĝo εAcap ĝ o ĝo ĝ o ĝo 
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(c) When we refer the impedances to the electrical side, we multiply each impedance on the mechanical side by 
(1/φ)2, thus: 

⎛ V 2ε l w ⎞⎜ k − o elec ⎟ Z ρ lwtĝ 4 s 
ZC1 = 

1
2 

Z1 / k ' = 
ĝ o 

4

2 
⎝
⎜ ĝ o 

3 
⎠
⎟
= 

1 Z L = φ 
m 
2 
= 
(ε lelec wV

o 

o )2 
= Ls 

φ (ε lelec wVo ) s C1s
m ρ lwtĝ o 

4 

⇒ C = φ 2 

= 
(ε lelec wVo )2	 ⇒ L =

φ 2 
= 
(ε l wV )2 

1	 4 2 elec o
k ' kĝ o −Vo ε lelec wĝ o


ĝo is found by solving : ĝo = go − 
Vo 

2ε lelec w 
2kĝo 

2 

1 
⎜⎜
⎛ 

s2 + 
1 

⎟⎟
⎞ 

(d)	 Zin = ZC //(ZC + Z L ) = 
1 //⎜⎜

⎛ 1 
+ sL⎟⎟

⎞ 
= 

1+ LC1s
2 

= 
sC0 ⎝ LC1 ⎠   -------- (2) 

o 1	 2sCo ⎝ sC1 ⎠ (s)(Co + C1 + LCoC1s ) 
s 2 + 

1 ⎛
⎜⎜ 

1 
+ 

1 ⎞
⎟⎟ L ⎝ C1 C0 ⎠ 

This is a third order system with 3 poles and 2 zeros. 

Substituting s = jω and setting the denominator and numerator to zero to find the poles and zeros respectively, we

find that: 


The poles occur at s=0 (ω = 0) and s=± jω where ω =	
Co + C1 

LCoC1 

The zeros occur at  s=± jω where ω = 
LC 

1

1 

k 4t E(e) When V0 = 0, ω1 → = ---------(3) 
ρ lwt l 2 ρ 

ω = 
1 

= 
k − Vo 

2ε lelec w / ĝo 
3 

= 
16Ewt 3 / l 3 − Vo 

2ε lelec w / ĝ o 
3 

2 LC1 ρ lwt	 ρ lwt 

16Ewt 3 / l 3 −α 2 ×128Et 3 go 
3ε lelec w /(27ε lelecl 3 ĝo 

3 )
= 

ρ lwt 
When V0=αVPI, 


16Et 2 −α 2 ×128(go / ĝo )
3 Et 2 / 27


=

ρ l 4


4t	 E 8α 2 (go / ĝo )
3 

= (1 − ) − − − − − − − − − −(4)
l 2 ρ 27 

α 2V 2 ε l w ⎡ 4α 2 ⎛ g ⎞
2 ⎤ 

ĝo = go − 
2 
PI

kĝo 
2 
elec = go 

⎣⎢
⎢1 − 

27 ⎝⎜
⎜ 

ĝo

o 

⎠
⎟⎟ 
⎦⎥
⎥ --------------------(5) 
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(f) As α → 1 in equation (4) above, V→VPI, ĝo → 
2 go , and thus:  ω2 → 

4
2 

t E (1−α 2 ) = ω1 1−α 2 

3 l ρ 
At V0=0, ω2 = ω1. 

At V0=0.95VPI , using the above approximation: ω2 = ω1 1− 0.952 = 0.31ω1


0.31−1And thus the maximum change in ω2 according to this approximation is: ×100 = −69% 
1 

The actual change in ω2 will be less than that calculated above because the approximate form for ω2 is really only 
accurate as α → 1. 

In fact, if we solve (5) numerically , we get ĝo = 0.7805go 

4t E ⎛ 8× 0.952 (1/ 0.7805)3 ⎞ 2.646t ESubstituting in (4) gives: ω2 = 
l 2 ρ ⎜⎝

⎜1− 
27 ⎟

⎠
⎟ = 

l 2 ρ 
--------------(6) 

2.646 − 4Thus the actual maximum change in ω2 will only be : ×100 = −33.85% 
4 

4t E 4 ×1×10−6 150 ×109 
 (g) From  (3), l = = × = 72µm

ω1 ρ 2π ×106 2300 

Hence lelec must be ≤ 7.2 µm. Use lelec = 7 µm. 
1 

Now from (1): go = ⎜
⎛ 27ε lelecVPI 

2l 3 
⎟
⎞ 3 

= 0.27µm
⎜ 128Et 3 ⎟

⎝ ⎠ 

w must be ≤ l/5 for the structure to act as a beam (rather than a plate), hence we will pick w = 10 µm. 

Figure 2 below plots f2 = ω2 / (2π) versus Vo as Vo varies from 0.05VPI to 0.95VPI . Figure 3 is a Bode plot of Zin at 
Vo = 0.05VPI and Vo = 0.95VPI .The MATLAB code is attached at the end of the solution. 
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% MATLAB code for prob 6.11 

function out=prob6_11() 

g0 = 0.27e-6;
lelec = 7e-6;
w = 10e-6;
l = 71e-6;
t = 1e-6; 

e = 8.85e-12;
rho = 2300;
E = 150e9; 

A = lelec * w; 

k = 16*(E*w*t^3/l^3);
m = t*l*w*rho; 

VPI = sqrt(8*k*g0^3/(27*e*A)); 

V = linspace(0.05*VPI,0.99*VPI,100); 

for in=1:length(V)
V0 = V(in);
G = fzero(@(G) gap(G,V0,k,e,A,g0),g0);
C0 = e*A/G;
phi = C0*V0/G;
kp(in) = k*(1-C0^2*V0^2/(e*A*k*G));
C1 = phi^2/kp(in);
L = m/phi^2;
w_r(in) = 1/(2*pi)*sqrt(1/(L*C1));
if in==1

 Z1 = tf([1/C0 0 1/(L*C0*C1)],[1 0 1/L*(1/C0+1/C1) 0]);
end 
if in==100

 Z2 = tf([1/C0 0 1/(L*C0*C1)],[1 0 1/L*(1/C0+1/C1) 0]);
end 

end 

w = logspace(6,7,5000);

bode(Z1,'r',Z2,'b',w)

figure

semilogy(V,w_r)


function y = gap(G,V0,k,e,A,g0)

y = G - g0 + e*A*V0^2/(2*k*G^2);
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