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SMA 6304 / MIT 2.853 / MIT 2.854 
Manufacturing Systems 

Lecture 9: Statistical Inference 

Lecturer: Prof. Duane S. Boning 

Agenda 

1. Review: Probability Distributions & Random Variables 
2.	 Sampling: Key distributions arising in sampling 

•	 Chi-square, t, and F distributions 
3.	 Estimation: 

Reasoning about the population based on a sample 
4.	 Some basic confidence intervals 

•	 Estimate of mean with variance known 
•	 Estimate of mean with variance not known 
•	 Estimate of variance 

5.	 Hypothesis tests 
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Discrete Distribution: Bernoulli 
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Bernoulli trial: an experiment w th two outcomes 

Probability mass function (pmf): 

f(x) 
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Discrete Distribution: Binomial 
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Repeated random Bernoulli trials 

is the number of trials 
is the probability of “success” on any one trial 
is the number of successes in n trials 
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Discrete Distribution: Poisson 
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Poisson is a good approximation to B nomial when 
is small (< 0.1) 

Example applications: 
# m sprints on page(s  of a book 
# transistors which fai  on first day of operation 

Mean: 
Variance: 
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Continuous Distributions 

Uniform Distribution 
Normal Distribution 

Unit (Standard) Normal D stribution 
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Continuous Distribution: Uniform 

• cdf  
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Standard Questions You Should Be Able To Answer 
(For a Known cdf or pdf) 

• Probability ts w th
some range 

• Probability less than or 
equal to some value 

Continuous Distribution: Normal (Gaussian) 
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Continuous Distribution: Unit Normal 
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Normalization 

• cdf  

Mean 

Variance 
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Using the Unit Normal pdf and cdf 

We often want to ta k about 
“percentage points” of the 

bution – portion in the 
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Philosophy 

The field of statistics is about 
in the face of 

uncertainty, based on evidence 
observed data 

Beliefs: 
Distribution or model form 
Distribution/model parameters 

Ev
Finite set of observations or data drawn from a population 

Models: 
Seek to explain data 
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Moments of the Population 
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vs. Sample Statistics 

Mean 

Variance 

Standard 
Deviation 

Covariance 

Correlation 

Sample 

Sampling and Estimation 

•	 Sampling: act of making observations from populations 
•	 Random sampling: when each observation is identically 

and independently distributed (IID) 
•	 Statistic: a function of sample data; a value that can be 

computed from data (contains no unknowns) 
– average, median, standard deviation 
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Population vs. Sampling Distribution 

Popu ation 
(probab ty density funct

Samp e Mean 
(statistic

Samp e Mean 
(sampling d stribution) 
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Sampling and Estimation, cont. 
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Sampling 
Random sampling 
Statistic 

is a random variable, which itself has a 
sampling distribution 

I.e., if we take multiple random samples, the value for the statistic 
fferent for each set of samples, but w  be governed by 

the same sampling distr
If we know the appropriate sampling distr bution, we can 
reason about the population based on the observed 
value of a statistic 

E.g. we calculate a sample mean from a random sample; in what 
range do we think the actual (population) mean really s ts? 
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Sampling and Estimation – An Example 

Suppose we know that the thickness of 
a part is normally distributed w th std. 
dev. of 10: 

We sample = 50 random parts and 
compute the mean part thickness: 

First question: What is distribution of 

Second question: can we use 
knowledge of    distr bution to reason 
about the actual (population) mean 
given observed (sample) mean? 
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Estimation and Confidence Intervals 

Point Estimation: 
Find best values for parameters of a distribution 
Should be 

Unbiased: expected value of estimate should be true va ue 
mum var ance: should be estimator w th sma est variance 

Interval Estimation: 
Give bounds that contain actual value w th a given 
probability 
Must know sampling distribution! 
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Confidence Intervals: Variance Known 

We know , e.g. from h storica  data 
Estimate mean in some interval to 1- )100% confidence 

0.1 

0.5 

0.9 

Remember the unit norma
percentage po nts 
Apply to the sampling 
distribution for the 
samp e mean 
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95% conf dence nterval, = 0.05 

Second question: can we use knowledge of
reason about the actual (population) mean given observed 
(sample) mean? 

~95% of distribut
es w thin +/- 2 of mean 
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Reasoning & Sampling Distributions 

Example shows that we need to know our sampling 
bution in order to reason about the sample and 

population parameters 

Other important sampling distributions: 
Student-t 

Use instead of norma distr bution when we don’t know actual 
var

Chi-square 
Use when we are ask ng about var ances 

Use when we are ask ng about ratios of var ances 
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Sampling: The Chi-Square Distribution 

Typical use: find distribution 
of variance when mean is 
known 

• Ex:  

So if we calculate , we can use 
know edge of chi-square distribut
to put bounds on where we be eve 
the actual (popu ation) variance s ts 

23ll

• σ 
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• xi ~ N(µ, σ2)

• (
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Typical use: Find distribution of average when is NOT known 
• For  

Consider  . Then 

This is just the “normalized” distance from mean normalized 
to our estimate of the sample var ance) 

Sampling: The Student-t Distribution 
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Back to our Example 

Suppose we do not know either the variance or the mean in 
our parts population: 

We take our sample of size = 50, and calculate 

Best estimate of population mean and variance (std.dev.)? 

If had to pick a range where would be 95% of time? 
Have to use the appropriate sampling d stribut
In th s case – the t-distribut on (rather than normal 
distr but
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Confidence Intervals: Variance Unknown 

Case where we don’t know variance a priori 
Now we have to estimate not only the mean based on 
our data, but also estimate the variance 
Our estimate of the mean to some interval w

100% confidence becomes 

Note that the t distr on is slightly w der than the normal 
distribut on, so that our conf dence interval on the true mean is 
not as t ght as when we know the variance. 
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Third question: can we use know edge of  distribution to 
reason about the actual (population) mean given observed 
(sample) mean – even though we weren’t told 

t distribution 
slight y w der than 

gauss an d stribut on 

95% confidence interva
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Once More to Our Example 

Fourth question: how about a confidence interval on our 
estimate of the variance of the thickness of our parts, based on 
our 50 observations? 
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Confidence Intervals: Estimate of Variance 

The appropriate sampling distribution is the Ch -square 
Because s asymmetric, c.i. bounds not symmetric. 
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Fourth question: for our example (where we observed 
102.3) w = 50 samples, what is the 95% confidence interval 
for the population variance? 
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x) 1, x2 n 

– y ~ N(µy, σ2 
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Sampling: The F Distribution 

Typical use: compare the spread of two populations 
• Examp e:  

 from which we sample x , …, x
from which we sample y , …, y

Then 
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Concept of the F Distribution 

Assume we have a normally 

We generate two different 
random samples from the 

In each case, we calculate a 
sample variance 
What range will the rat
these two variances take? 

Purely by chance (due to 
sampling) we get a range of 
ratios even though drawing 
from same population 

Example: 

Assume ~ N(0,1) 

Take samples of size 

Ca cu ate s and s and take ratio 

95% confidence interval on rat

Large range in rat
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Hypothesis Testing 

A statistical hypothesis is a statement about the parameters of a 
probability distr bution 

is the “null hypothesis” 
E.g.   
Would ind cate that the machine is working correct
is the “alternative hypothesis” 

– E.g.  
Indicates an undesirab e change (mean shift  in the machine 
operation (perhaps a worn too

In general, we formulate our hypothesis, generate a random 
sample, compute a statistic, and then seek to re ect or fai
reject (accept based on probabilities associated w th the 
statistic and level of confidence we select 
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Which Population is Sample 
Two error probabilities in decision: 

Type I error: “false alarm” 
Type II error: “m
Power of test (“correct alarm”

Cons
“alarm” condition 

Set decis on po nt (and 
sample size) based on 
acceptab

Cons the 
“norma ” condition 

Control charts are hypothesis tests: 
Is my process “ n control” or has a significant change occurred? 
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Summary 
1. Rev ew: Probability Distr butions & Random Var ables 

Sampling: Key d stribut ons aris ng in samp ng 
Chi-square, t, and F distributions 
mat on: Reason ng about the populat on based on a sample 

Some basic confidence interva
Estimate of mean w th variance known 
Estimate of mean w th variance not known 
Estimate of variance 

Hypothes s tests 

Next Time: 
Are effects (some variable) s gnificant? 

ANOVA (Ana ys s of Var ance
How do we model the effect of some variable(s

Regression modeling 


