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Run by Run Control Methodology
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Run by Run Control Context - Cell Control
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EWMA Run by Run Control Approach

Disturbance
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Algorithm

Q Affine model of process: y[n] = Ax[n}+ b[n]

0 Exponentially Weighted Moving Average (EWMA) update of model based on
current run: bln + 1] = W(y[n]-Ax[n]) + (I - W)b[n]

1 Use model to generate a new recipe for next run

» Linear solver uses model equations to find
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Model Adaptation and Recipe Generation
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Key Idea: Equipment changes (approximately) cause models
to shift (drift), but not change in shape.
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Recipe Generation

B Constrained problem cases:

min |x[n] - x[n-1]| min T~ (Ax{n] + b{n]
x[n] x[n]
such that X pax > X[0] > x5 such that X ppax > X[ > X i

and T = Ax[n]+ b[n]

w®  Minimize Recipe Change "®  Minimize Error from Target

B In the unconstrained case the above solutions are simple
0 E.g. for a multivariate linear model - simple matrix inversion

W With current hardware and reasonable problem sizes, constrained solution can be
accomplished in short time (i.e. time between runs)
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Additional Algorithmic Issues

B Controller robustness and stability
0 Understand bounds for well-behaved control

B Controller tuning
L Appropriate selection of controller EWMA weights

B Extended EWMA controllers:

3 Predictor-Corrector Control (PCC) - appropriate for strongly (linear) drifting
processes

O Nonlinear control models -
3 Full model adaptation (in addition to model offset term)

B Control of Spatial Uniformity
0 Correct construction of process-dependent uniformity models
» “Multiple” vs. “Single” response surface approaches
O Appropriate formulation of control problem to handle uniformity
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Example 1: Univariate Time-Based Control
of Sputter Deposition (MIT/TI)
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B The goal is to maintain a desired metal deposition thickness from wafer to
wafer and lot to lot.
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Process Behavior for Metal Sputter Deposition
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B Metal sputter deposition processes are characterized by a decrease in deposition
rate as the sputter target degrades and material builds up in the collimator.

B The process drift rates vary from target to target.
B The drift rate may change over the life of a single target.

B The starting deposition rate may differ from target to target.
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Control Approach: Rate Model & Time Adjustment

B RbR MBPC, based on the exponentially-weighted moving-average filter, provides
the ability to track and compensate for process drifts without a priori assumptions
on their magnitude or consistency.

B A simple model for sputter deposition is:
filmThickness[n] = depRate[n] X depTime{n]

W An open loop estimate of the deposition rate can account for the drift dynamics in
metal sputter deposition:

’filmThickness[n]
depTime[n]

depRate, [n] = w + (1 -w)-depRate,,[n—1]

B Given the revised deposition rate model, a new deposition time is simply found:

ImThick .
depTime[n+ 1] = fl MINICKNESS yysired

depRate,,[n]
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State Estimation Results for EWMA Control
(Aluminum Sputter Deposition)
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Performance Results - TiN/AI/TIN

B C,, the process capability, improved by 44% with the EWMA controller. With RbR

MBPC, control of aluminum thickness was to within 3% of the goal, compared to
approximately 5% without MBPC.

B Increased processing efficiency:
O Monitor wafers reduced from 1 every lot to 1 in 3 lots
0 Look-ahead wafers were eliminated

B Simplified processing for technicians
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Example 2: Multivariate Control of
Chemical Mechanical Polishing

Slurry Feed

: Feed
¥ Platen

B CMP is critical to advanced IC interconnect technologies
B Key capability: “global” planarization of surface topography

B Active research in process, equipment, and sensor development
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Problem: CMP Limitations and Control Challenges
B Limited understanding of the process
B Substantial drifts in equipment operation
B Limited in-situ sensors
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CMP Control Model Experiments

B Initial screening in seven factors to determine key control parameters

B Central composite DOE in four factors performed:

Lower Upper
Factor Bound Bound
speed (rpm) 20 40
pressure (psi) 0 7
force (Ib) 8 10
profile -0.9 0.9

B Second order polynomial regression models fitted:

QO Removal rate -- R2 of 89.7%
Q Nonuniformity -- R? of 76.9%
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CMP Control Model Development

B Response surfaces are nearly linear and well-behaved over operating region:
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CMP Control Experiment: Inputs
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B Controller produces increasingly aggressive control to compensate for drift
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CMP Control Experiment: Outputs
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B Controller successfully compensates for drift in the process, and
maintains adequate uniformity
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Example 3: Spatial Uniformity Control on a Dual Coil
Plasma Etch Tool (Lam TCP)

Modified TCP for polysilicon etch: FWI
Dual-Coil Antennae e ___ el [

Full Wafer Interferometry -
Wafer
| |

W Dual-Coil TCP antennae allows shaping of the plasma etching profile
0 Independent RF Generators allow control of power to inner and outer coils
1 More power to inner coil increases the etch rate in the middle of wafer
O Concentric coils can control radial uniformity
v’ There is an optimal power setting that will maximize etching uniformity
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ANN-EWMA Run-to-Run Control Approach

ANN-EWMA Controller

=

Set » , . , : 81 Spatially

e _ :

N Optimizer | » T Resolved

Point p - : ANN Model Etch Rates
RFinnerv

Artificial Neural Network RFouter : W s W 2 57 54 B

N

model was built from Full

Wafer Interferometry data

obtained through a 2 variable 3

level full factorial experiment: b

12 wafers for model Cross Section of Modified TCP
development
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Full Wafer Interferometry

Extract Intensity Vs. time
for selected sites l

Estimate Spatially
Resolved Etch Rates

Acquire CCD images
during an etch

\

B Modulation is observed as a thin film is etched
Q Periodicity of the modulation can provide information about etching rate

B CCD array allows resolution of spatial variation in the etching rate
O We measure etch rates at 81 different sites on the wafer
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An Artificial Neural Network EWMA Controller

Disturbance
| Plant |

Output
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R [ ©
' | Network Model il
[T EwMA [

B Use a multilayer perceptron neural network to capture nonlinear process model
yn] = f(x[n]) +b[n]
B Adapt the bias weights in the NN output layer based on EWMA update

bin] = W(b[n)) +(I-W)bln - 1] where W = diag(|w, ... w,])

B Generate recipe from nonlinear model via optimization
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ANN model based EWMA controller
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Key ldea: Artificial neural network provides functional approximation to site models.
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Etch Process Control - Results:

Mean Etch Rate
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B Obijective: Minimize etch nonuniformity and recipe change from setpoint

min(B LSOl _gy . Jugn] - u[om)

mean(y(n])

B Process shift introduced at wafer #6

1 ANN-EWMA controller responds to disturbance and brings the wafer uniformity
and etch rate back within specifications
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Etching rate profile is improved

Disturbance introduced System has responded to process shift
a0, Etching uniformity is poor
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B Full Wafer Interferometry can yield spatial etching rate information in-situ

2 This information is utilized by the Run-to-Run controller to maintain wafer
specifications by suggesting minor recipe perturbations

B The Dual-Coil TCP allows for recipe adjustments that can correct for etching
uniformity variation within less than 3 wafers
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