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Agenda

1. Comparison of Treatments (One Variable)
Analysis of Variance (ANOVA)

2. Multivariate Analysis of Variance
Model forms

3. Regression Modeling
[l Regression fundamentals
Significance of model terms
Confidence intervals
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Is Process B Better Than Process A?

time
order  method yield

1 A 89.7

2 A 814 vield

3 A 845 92 .

4 A 848

5 A 87.3 0 .

6 A 797 88 .

7 A 85.1 .

8 A 817 8 . R ”—
9 A 837 e

10 A 845 . .
11 B 84.7 82 . .

12 B 86.1 80. .

13 B 83.2 .

14 B 91.9 ;

15 B 86.3 01 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
16 B 793 time order

17 B 826

18 B 89.1 7 = 84.94

19 B 837 Ja=8424 Hy:pa=pn

20 B 88.5 I = 85.64

Hytpa<p
G — Gia = 1.30 1VIRA < g
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Two Means with Internal Estimate of Variance

Method A Method B
count n4 =10 count ng =10
sum 842.4 sum 855.4
average g4 =84.24 average G = 85.54 )
sum squares > (ya — §a)? = 75781 SUI squares Sy — §i)? = 119.924
yp —ya =130

Pooled estimate of o2 105708 = 10.8727 with v=18 d.o.f

Estimated variance
of im — i

Estimated standard error 2 fuwier g A7
of fim — i 5 5

— Up-9a}-(1p—nado
ty = @o=ga)-bun—ualy

s/ natn
Tor (ng —nplo =04y = }—]’3 = 0.88 with » = 18 degrees of freedom.

Pr(t > 0.88) = 0.195  So only about 80% confident that
mean difference is “real” (signficant)
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Comparison of Treatments

~ N

Population A Population C Sample A
Population B P Sample B Sample C

« Consider multiple conditions (treatments, settings for some variable)
— There is an overall mean p and real “effects” or deltas between conditions ;.
— We observe samples at each condition of interest
« Key question: are the observeddifferences in mean “significant”?
— Typical assumption (should be checked): the underlying variances are all the
same — usually an unknown value (c,2)
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Steps/Issues in Analysis of Variance

1. Within group variation
— Estimates underlying population variance

2. Between group variation
— Estimate group to group variance

3. Compare the two estimates of variance

If there is a difference between the different treatments,
then the between group variation estimate will be inflated!
compared to the within group estimate

We will be able to establish confidence in whether or not
observed differences between treatments are significant
Hint: we'll be using F tests to look at ratios of variances
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(1) Within Group Variation

« Assume that each group is normally distributed and shares a
common variance c,?

+ SS, = sum of square deviations within t" group (there are k groups)
S8, = Z(!//, — 5)* where n; is number of samples in treatment ¢
j=1
« Estimate of within group variance in t group (just variance formula)

) qa S8, . .
s;=88/v = ﬁ where v, is d.o.f. in treatment ¢
=
« Pool these (across different conditions) to get estimate of common
within group variance:
m,sf+1/1,sf+~~+w.si S8z SSk

2
2= TP T R =
R vy v+ 4 vi N—k
« This is the within group “mean square” (variance estimate)
. S5k 9
MSp = =%
vr
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(2) Between Group Variation

* We will be testing hypothesis p, = p, = ... =

« If all the means are in fact equal, then a 2" estimate
of 52 could be formed based on the observed
differences between group means:

k e . R
2 Yy (i — §)%  where n, is number of samples in treatment L

or k—1 and k& is the number of different treatments

< |f all the treatments in fact have different means, then
s{2 estimates something larger:

27 ZL:l netf where 74 is the (real) difference between
- L group ¢ mean and the grand mean g
ST = 0% E_1 g t d the grand
Variance is “inflated” by the
real treatment effects 1,
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(3) Compare Variance Estimates

+ We now have two different possibilities for s;2,
depending on whether the observed sample mean
differences are “real” or are just occurring by chance
(by sampling)

« Use F statistic to see if the ratios of these variances
are likely to have occurred by chance!

« Formal test for significance:

2
Reject Hy (no mean difference) if £

R
is significantly greater than 1.
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(4) Compute Significance Level

+ Calculate observed F ratio (with appropriate
degrees of freedom in numerator and
denominator)

» Use F distribution to find how likely a ratio this
large is to have occurred by chance alone

— This is our “significance level”

—If Fy = ST:;'IE'?{ > Fawoy v=k
then we say that the mean differences or treatment
effects are significant to (1-a)100% confidence or
better
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(5) Variance Due to Treatment Effects

» We also want to estimate the sum of squared
deviations from the grand mean among all
samples:

koo

SSp=3"> (-9
t=1i=1
S5p

s, = SSp/vp = 1

= AISp

N

where N is the total number of measurements
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(6) Results: The ANOVA Table

degrees
source of - sum of of mean square  F, Pr(Fy)
variation squares  freedom

Between

' 3 _ 8Sp 2
treatments  OOT k-1 sy = =% %

table

Also referred to
Within ¥ as “residual’ SS

treatments SSp N — k s?‘. = _B‘:‘l )

Total about e N .
thegrand SS5p N -1 S = N
average 4 X

5850 = S8 + 555
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Example: Anova

A B C

1 10 12 2
10
10 8 10 8
—_— =
12 6 1 o
6 .
Excel: Data Analysis, One-Variation Anova
s A B c
nowa: Single Factor
SUMMARY 55, 1) 4 (11 = 11)% 4 (10 = 11
Groups Count | Sum _ Average | Varance e .
Y 3 S g :
B 3 24 8| 4 S5, 1% 4 + 172
c 3 3 i 1
WS s
ANOVA g MS 8 n
Source of Varafion 55 T s F P _Fort 3 Y 4
Between Groups 78 2 5 45 oo 514 1 Hi=1
Within Groups 12 6 2 P
Val Va 58, + 55, + 5§ 2
Total 3 8
N —k
52 9
r 2 31 1
F E] 1 .
9
I 0
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ANOVA - Implied Model

« The ANOVA approach assumes a simple mathematical
model: Y = HTTLE ey
= M teEy

* Where p, is the treatment mean (for treatment type t)
» And 1, is the treatment effect
+ With g, being zero mean normal residuals ~N(0,5,?)
« Checks

— Plot residuals against time order

— Examine distribution of residuals: should be IID, Normal

— Plot residuals vs. estimates

— Plot residuals vs. other variables of interest
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MANOVA - Two Dependencies

« Can extend to two (or more) variables of interest. MANOVA
assumes a mathematical model, again simply capturing the means
(or treatment offsets) for each discrete variable level:

i = 4+ 9w+ 8+ e
o o= o+ T+ 5
# model coeffs = 1 + k + n
T
# independent model coeffs = 1 + (k-1) + (n—1)

Recall that our 7 are not all independent model

coefficients, because %7 7, = (1. Thus we really only

have k— 1 independent model coeffs, or 1y = k—1.
« Assumes that the effects from the two variables are additive
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Example: Two Factor MANOVA

Two LPCVD deposition tube types, three gas suppliers. Does supplier matter
in average particle counts on wafers?

— Experiment: 3 lots on each tube, for each gas; report average # particles added

Factor 1 Analysis of Variance .
Gas Source DF Sum of Squares Mean Square  F Ratio
Model 3 1350.00 450.0 32.14
Error 2 28.00 140  Prob>F
Eactor2 1 C. Total 5 1378.00 0.0303
Tube 2 Effect Tests
Source Nparm DF Sumof Squares  F Ratio Prob>F
Tube 11 150.00 10.71 0.0820
Gas 2 2 120000 4285  0.0228
i 1" T + % + i
Ju oo+ -y + i)+ ity
7 36 2 20 20 20| , [-10 20 -10| 5 5 5 2 1 3
‘134415‘ ‘202020"‘402040‘ *‘5 55‘Jr ‘72 -1 3‘
ER) 554 + 55y + 58y + S5k
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MANOVA - Two Factors with Interactions
« May be interaction: not simply additive — effects may depend
synergistically on both factors: 1D, ~N(0.0?)
o= g o€y e
Yui 5 = Hui Liyj
‘\ An effect that depends on both
t & i factors simultaneously
t = first factor=1,2, ... k (k = # levels of first factor)
i = second factor = 1,2, ... n (n =# levels of second factor)
j=replicaton=1.2, ... m (m = # replications at t, jth combination of factor levels
» Can split out the model more explicitly...
Yy = BTGt wn ey
Estmateby:  Ju; = G+ @ -G+ G- P+ Wu+h -5+ D
Wi interaction cffects = (i, + @ — @ + §)
7. 5 main effects
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MANOVA Table — Two Way with Interactions

degrees
source of  sum of of mean square Fy Pr(F,)
variation squares freedom
Between levels . -
of factor 1 (T) ~ * Sr 1 Lo table
Between levels - o
offactor2 (B) I9A n—1 85 table
Interaction S§5; (k=1)n-1) ‘I: table
Within Groups . . .
(Error) S5k nk{m =1}
Total about
thegrand  gq, nhm — 1
average
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Measures of Model Goodness — R2

« Goodness of fit — R?

— Question considered: how much better does the model do that just
using the grand average?

— Think of this as the fraction of squared deviations (from the grand
average) in the data which is captured by the model
« Adjusted R?
— For “fair” comparison between models with different numbers of
coefficients, an alternative is often used

2 1 SSw/vw _ 1 _ sk
adj = SSp/vp 52,

— Think of this as (1 — variance remaining in the residual).
Recall vg = vp - v¢
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Regression Fundamentals

« Use least square error as measure of goodness to
estimate coefficients in a model
¢ One parameter model:
— Model form
— Squared error
— Estimation using normal equations
— Estimate of experimental error
— Precision of estimate: variance in b
— Confidence interval for
— Analysis of variance: significance of b
— Lack of fit vs. pure error
« Polynomial regression

Copyright 2003 © Duane S. Boning. 20

Least Squares Regression

* We use least-squaresio estimate v
coefficients in typical regression models
* One-Parameter Model:
i = Bri+e, i=1,2...n
g o= bu;

Residual

« Goal is to estimate  with “best” b
* How define “best"?

— That b which minimizes sum of squared
error between prediction and data

88(8) = Xiiwi-9) =S (i - dn)?

— The residual sum of squares (for the
best estimate) is

SSuin = Xy —bre)? = Sk

Copyright 2003 © Duane S. Boning. 21




Least Squares Regression, cont.

« Least squares estimation via normal
equations
— For linear problems, we need not

calculate SS(B); rather, direct solution for 2y =9 0
b is possible Yly=bajz = 0 b
— Recognize that vector of residuals will be Xy Xor
normal to vector of x values at the least Ty
squares estimate = b= e
« Estimate of experimental error
— Assuming model structure is adequate, 2 _ SSn
estimate s? of o2 can be obtained: 8 =0T
Copyright 2003 © Duane S. Boning 22
Precision of Estimate: Variance in b
« We can calculate the variance in our estimate of the slope, b:
() = 5 se.(b) = V(b
VD) = <5 sed) = \/V ()
bEs.e.(b)
. Why? b = g2+---ﬁ-zn
= + @nlyn
V) = (@i+dd+--+a2)o?
z1 2 zy V2| 52
— {(ZI']H) to (2] o
D SF S
- et
p— 02
= <=
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Confidence Interval for

« Once we have the standard error in b, we can calculate confidence
intervals to some desired (1-a.)100% level of confidence

= fG=bLty-se(d)

« Analysis of variance
— Test hypothesis: Hy:3=5b=0
— If confidence interval for B includes 0, then B not significant

— Degrees of freedom (need in order to use t distribution)
Y o= i o+ Tlw—-w)?
mn = P - n- P

p = # parameters estimated
by least squares
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Example Regression

Age Income
8 6.16 Whole Moo?el ]
» 088 Analysis of Variance
Source DF  SumofSquares  Mean Square F Ratio
35 14.35 Model 1 8836.6440 8836.64  1093.146
40 24.06 Error 8 64,6695 8.08 Prob>F
C. Total 9 8901.3135 <.0001
57 30.34 Tested against reduced model: Y=0
73 3217 Parameter Estimates
78 4218 Term Estimate  StdEmor  tRatic  Prob>[t|
Intercept  Zeroed o 0
87 43.23 age 0500983 0015152 33.06 <0001
98 48.76 Effect Tests
Source Nparm DF Sum of Squares F Ratio Prob > F
age 1 1 8836.6440 1093.146 <.0001
40
30
RS / « Note that this simple model assumes an intercept of
1 zero — model must go through origin
T + We will relax this requirement soon

o 25 s 75
age Leverage, P<.0001
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Lack of Fit Error vs. Pure Error

+ Sometimes we have replicated data
— E.g. multiple runs at same x values in a designed experiment

» We can decompose the residual error contributions

Where

SSR = SSL + SSE SSg, = residual sum of squares error
SS, = lack of fit squared error
SS; = pure replicate error

« This allows us to TEST for lack of fit
— By “lack of fit” we mean evidence that the linear model form is
inadequate

2
8
L
52 ~ FVL,UE
E
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Regression: Mean Centered Models
* Model form n=a+ 3z —-z)
. Estimate by  §=a+bz—2), y ~N(no?)
Minimize SSp = 3_(y; — 9:)? to estimate o and 3

a =y

E(a) =a
yi
%

Var(a) = Var {Z—] = ‘1—2
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Regression: Mean Centered Models

« Confidence Intervals
o= F+blzi—7)
Var(g) + (@, — T)*Var(b)
o2 st )2

= SHEE

= Our confidence interval on y widens as we get
further from the center of our data!
Ui £ Layay/ Varlis)

#i(zi=2)3

ittty smar

Var(g;)
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Polynomial Regression
= We may believe that a higher order model structure applies.

Polynomial forms are also linear in the coefficients and can be fit
with leasl squares

=G+ Biz + F2x®  Curvature included through 2 term

= Example: Growth rate data
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Regression Example: Growth Rate Data

Bivariate Fit of y By x
Growih rate data [:=
amount of supplement growth rate hes * ...
obarvation {grams) feoded units) B < LN
fumber x ¥ / -
Y B o
: ® ™ i
2 10} ® '
] [E1 £ o=
4 w w0 {
3 m} Wl }’ 1/
s b2l " L
? 23] laJ 5 W B oW B W OB M
¥ 3 v il
@ 0 i3
o ¥ a Fit Mean
Lirsas Ft
——Palynomial Fit Degrae=]

- Replicate data provides opportunity to check for lack of fit
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Growth Rate — First Order Model

» Mean significant, but linear term not
+ Clear evidence of lack of fit

Anslysis of variance for growth rate data: straight line model

degreet
of
Source sum of squanss freedom mean square
mean 67,404 1 [ 67.404.0
modc Sy = 67, & ol
! i m 708 catea for linear 24.5 {l 45
lack of i S, = 659.40 ] 16485
- 2442
—f lmﬂu:l{mm‘" Se = “M{S. - R{‘ EM{ 675 10
wial 5p = 681130 1]
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Growth Rate — Second Order Model

= No evidence of lack of fit
* Quadratic term significant

Analysis of variance for growth rate data: quadratic model

degrees of

source sum of squares freedom mean square

[mean 67,404.1 674041
model Sy = 88071 Bexira for lincar 24.5 \ us

ra for quadratic 643.2 | 432
5 = 1 3 $.40
i residual s"""{s,-zw 1{‘ {ms ratio = 0.80
total §p = 68,1150 10
Copyright 2003 ® Duane S. Boning. 32

Polynomial Regression In Excel

+ Create additional input columns for each input
+ Use “Data Analysis” and “Regression” tool

<z ¥ Regrassion Statistics
10 100 73 Multiple R 0968
0| 00 72 R Square 0936
15 225 85 Adjusted R Square 0918
;g ﬁ :? Standard Error 2541
= b & Observations 10
&=
;:' zi 5 RNOVA
W s ey ot 55 S £ Signficance £
a5 1225 & Regression 2 6E5.7068 302853 51555 B.4BE-05
Residual 7 45184 6.456
Total 9 7109
. Standard Lower Upper
Coefficients Error rSar  Pvalue  95% 95%
Intercept 35657 5618  6.347 00004 22373 48042
% 5.263 0558 0431 39E0S 3843 6582
22 0128 0013 5966 22608 L0158 0087
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Polynomial Regression

Analysis of Variance

Source  DF  Sumof Squares Mean Squar  F Ratio ’
Model 2 665.70617 332.853  51.5551 * Generated using JMP package
Error 7 45.19383 6456 Prob>F
C.Total 9 710.90000 <0001
Lack Of Fit Summary of Fit
Source DF  Sum of Squares Mean Square  F Ratio
LackOfFit 3 18.193829 6.0646  0.8985 R:Sq“are » 0.936427
Pure Eror 4 27.000000 67500 Prob>F auare Adj 0.918264
Total Error 7 45.193829 05157 Root Mean Sq Error 2540917
Max RSq Mean of Response 821
09620 Observations (or Sum Wgts) 10
Parameter Estimates
Term Estmate  SdEmor  tRatio  Prob>t|
Intercept 35657437 5617927 635  0.0004
x 52628956  0.558022 943 <0001
x'x 0127674 0.012811 097 <0001
Effect Tests
Source  Nparm  DF Sum of Squares FRatio  Prob>F
1 1 574.28553 88.9502 <0001
X' 1 1 641.20451 99.3151 <0001
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«[1 Comparison of Treatments — ANOVA
[l Multivariate Analysis of Variance
(] Regression Modeling
(] Time Series Models
] Forecasting
35
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