
Projective Geometry Considered Harmful

Berthold K.P. Horn

Copright © 1999

Introduction

Methods based on projective geometry have become popular in machine vision
because they lead to elegant mathematics, and easy-to-solve linear equations
[Longuett-Higgins 81, Hartley 97a, Quan & Lan 99]. It is often not realized
that one pays a heavy price for this. Such method do not correctly model the
physics of image formation and as a result require more correspondences and are
considerably more sensitive to measurement error than methods based on true
perspective projection.

Projective geometry based methods are rarely used in photogrammetry [Wolf
74, Slama 80]. There the cost of acquiring the data is high and every effort is made
to extract information about the scene and about the image taking geometry that
is as accurate as possible.

Since linear equations are easier to solve, there may appear to be an advan-
tage in computational cost, but this advantage — if any — has been eroded by
the reduced cost and increased speed of computation. Given the noisy nature of
image measurements, one simply cannot afford to throw away accuracy.

The issue of the limitations of projective geometry when applied to pho-
togrammetric problems has been raised before, particuarly in the context of the
relative orientation problem that arises in binocular stereo [Hartley 97b]. But rel-
ative orientation is a relatively complex problem where it is hard to gain insight
from simple geometric arguments or numerical experiments. As a result, not all
researchers have been persuaded that methods based on projective geometry are
in fact inferior. Still, it is hard to see the attraction of linear methods for relative
orientation, since good methods for solving the least squares problem of relative
orientation do exist [Horn 90, 91].

We revisit this topic here in the context of a simpler problem, that of exterior
orientation with respect to a planar object. We examine the difference between
the mapping from the object plane to the image plane defined by true perspective
projection and that defined by projective geometry. We show that virtually none
of the transformations allowed by projective geometry correspond to real camera
image-taking situations.

2

We then compare the algorithms and study the sensitivity to noise using
Monte Carlo methods and show that the error sensitivity of projective geometry
based methods is much higher.

Projective Geometry versus Perspective Projection.

The true mapping from coordinates in the object coordinate system to image
coordinates consists of two steps:

(i) Rigid body transformation of the object coordinate system into the camera
coordinate system. Rigid body transformations are combinations of rota-
tion and translation. If, for now, we use orthonormal matrices to represent
rotation, we can write      

xc xt xo  yc   yt   yo  = R + (1)
zc zt zo

where R is orthonormal and represents rotation, while t = (xo, yo, zo)
T is the

translation (position of the object coordinate system origin in the camera
coordinate system). Orthonormality implies RT R = I . This equation
imposes six independent non-linear constraints on the 9 elements of the
3 × 3 matrix R. In addition, for R to represent a rotation (rather than a
reflection), we also need det(R) = +1,

(ii) Perspective projection

u = f (xc /zc) + uo
(2)

v = f (yc /zc) + vo

where f is the principal distance (effective focal length) and (uo, vo)
T is the

principal point (base of perpendicular dropped from the center of projection
to the image plane). The interior orientation of the camera is summarized
in the vector (uo, vo, f)T from the center of projection to the principal point
in the image plane.

For simplicity, we now consider a planar object, where we can for convenience
arrange the object coordinate system such that zt = 0 in the plane of the object.
If we write out the elements of the rotation matrix we find:        

xc r11 r12 r13 xt xo  yc  =  r21 r22 r23   yt  + yo  . (3)
zc r31 r32 r33 0 zo

Absorbing the translation (xo, yo, zo)
T into the 3 × 3 matrix and dividing the

3

third component by f we get:      
xc r11 r12 xo xt  yc  =  r21 r22 yo   yt  . (4)

zc /f r31/f r32/f zo/f 1

Note that this equation involves a vector (xt , yt , 1)
T , unlike the previous equation

using (xt , yt , 0)
T (This makes it easier to match this result with the projective

geometry formulation). Now perspective projection (eq. 2) gives us     
k(u − uo) r11 r12 xo xt  k(v − vo)  =  r21 r22 yo  yt  , (5)

k r31/f r32/f zo/f 1

where k = zc /f . We write the equation in this unusual form to make it easier
to identify terms with those occuring in the equations that arise in projective
geometry — to be discussed next.

The homogeneous representation of a point in a plane uses three numbers
(u, v, w)T [Wylie 70]. The actual planar coordinates are obtained by dividing the
first two elements by the third: x = u/w, and y = v/w. Naturally, this repre-
sentation is not unique, since any non-zero multiple (ku, kv, kw)T corresponds
to the same position in the plane. Homogeneous coordinates are used because
they make it easier to apply the methods of projective geometry.

A 3 × 3 matrix T represents a homogeneous transformation from the object
plane to the image plane. T multiplied by a 3-vector (xt , yt , 1)

T representing
position in the object plane yields a 3-vector (ku, kv, k)T that represents the
corresponding position in the image plane — both in homogeneous coordinates:     

ku t11 t12 t13 xt  kv   yt  =  t21 t22 t23 (6)
k t31 t32 t33 1

This matches the equation for true perspective geometry provided we set up the
elements of the matrix T as follows:

t11 = r11, t12 = r12, t13 = xo

t21 = r21, t22 = r22, t23 = yo (7)

t31 = r31/f, t32 = r32/f, t33 = zo/f

In addition, for this identification of transformation formulas to work, measure-
ments in the image must be made in a coordinate system with the origin at the
principal point (so that uo, vo = 0). Keep in mind that any non-zero multiple
of the matrix T in the above equation describes the same projective geometric
relationship (i.e. there is a scale factor ambiguity).

What is important to note from the above is that if T is to represent a real
perspective projection of the object plane into the image plane then it must satisfy

() ()

4

two non-linear constraints

t11t12 + t21t22 + f 2t31t32 = 0 (8)

and
t11t11 + t21t21 + f 2t31t31 = t12t12 + t22t22 + f 2t32t32 (9)

which follow directly from the orthonormality of the first two columns of the
rotation matrix R.

Given the scale factor ambiguity, we can arbitrarily pick t33 = 1 and choose
the other eight elements of T independently. (We can do this unless the object
coordinate system origin lies in the image plane, since if t33 = 0, the origin of the
object coordinate system (0, 0, 1)T is transformed by T into a coordinate with
zero third component, that is, a point at infinity in the image plane).

The above two non-linear constraints reduce the degrees of freedom further
from eight to six, which is as it should be, since rotation has three degrees of
freedom and translation has three. Hence there are really only six independent
variables, not eight.

We can always find a matrix T corresponding to a real perspective projection
(if we assume that the principal point is known), using the equations above,
but in general it is not possible to go in the other direction, that is, to find a
perspective projection that corresponds to an arbitrary matrix T . That is, almost
all homogeneous transformations T have the property that they do not allow a
physical interpretation in terms of rigid body motion and perspective projection.

Importantly, an arbitrary 3 × 3 matrix T will not satisfy the two non-linear
constraint and hence can not represent a true perspective projection. Examples
of mappings allowed by projective geometry but not by perspective projection are
skewing and anisotropic scaling. If, for example, we distort a normal perspective
image by the additional operations

1 s 1 0
or

0 1 0 k

applied to the image coordinates (xi , yi)
T then in general we will have an “image’’

that could not have been obtained from any position with any camera orientation.
Yet such distortions merely change the elements of T and thus are permitted by
projective geometry.

One may wonder whether there is a physical imaging situation that does
correspond to a homogeneous transformation by an unconstrained matrix T .
There is:

The transformations of perspective geometry correspond to taking a perspective
image of a perspective image.

In this case, we obtain an overall transformation that need not satisfy the two non-
linear constraints. (Interestingly, the transformation is not further generalized

5

by taking a picture of a picture of a picture). But in any case we are typically
interested in a “direct’’ image, not a picture taken of a picture.

If one finds a transformation T that best fits the data without imposing the
nonlinear constraints, one is left with the problem of finding the rigid body trans-
formation R and t “nearest’’ to the linear transformation T . Without imposing
the two constraints, the “solution’’ can adjust to measurement errors in ways that
increase the error in the “nearest’’ rigid body transformation.

Estimating Object Attitude and Position using Projective Geometry

There are two distinct steps:

(i) the determinination of a projective geometry transformation T that maps
points in the object plane into points in the image plane; and

(ii) finding an orientation (rotation R) and position (translation t) of the object
coordinate system expressed in terms of the camera coordinate system that
approximates the transformation T .

Both parts can be dealt with using homogeneous coordinate notation. See Ap-
pendix A for details of recovering T (part (i)).

Recovery of Orientation

A simple method for the recovery of the orientation and position of the object
coordinate system in the camera coordinate system from T can be derived using
the concept of vanishing points.

A straight line on the object maps into a straight line in the image under
perspective projection. However, if we move along the line in the object at a
constant rate, we do not move along the corresponding image line at a constant
rate. The movement slows down and approaches a limit as we go off to infinity
along the line in the object plane. This limiting point is called the vanishing point
for that object line.

Consider the homogeneous 3-vector (αa, αb, 1)T as α → ∞. This is clearly
just the same as (a, b, 0)T . It follows that the vanishing point for a line with
direction (a, b)T in the object plane is

u = (t11a + t12b)/(t31a + t32b)
(10)

v = (t21a + t22b)/(t31a + t32b)

Importantly, if we construct a line from the center of projection ((0, 0, 0)T) of the
camera to the vanishing point in the image plane (z = f), we have a line that is
parallel (in three dimensions) to the line on the object. We can apply this idea

()

6

to the x- and y-axes of the object, and from the two vanishing points find the
directions of these two axes in the camera coordinate system.

The vanishing point for the x-axis is just (1, 0, 0)T in the object coordi-
nate system. Multiplying the matrix T by this vector yields the homogeneous
image coordinate (t11, t21, t31)T . Similarly, we get (t12, t22, t32)T from (0, 1, 0)T

for the y-axis. These two correspond to image coordinates (t11/t31, t21/t31)T

and (t12/t32, t22/t32)T respectively (Points in the image, when written as vectors
in the camera coordinate system, have the third component equal to f . For
convenience we drop this constant component and write image positions using
2-vectors).

If we connect the center of projection to these points in the image plane we
obtain direction vectors parallel to

x = (t11, t21, f t31)
T ,

(11)
y = (t12, t22, f t32)

T .

We can divide these two vectors by their magnitude to obtain unit vectors x̂ ad ŷ
in the direction of the x- and y-axes of the object plane (expressed in the camera
coordinate system). So it is easy to find the directions of the two object coordinate
system axes (expressed in the camera coordinate system) directly from the first
two columns of T (provided the principal distance f is known).

Since the z-axis — perpendicular to the object plane — has to be at right
angles to any line in the object plane, we can find its direction simply by taking
the cross-product of the directions of the x- and y-axes found above. A rotation
matrix relating (3-d) object coordinates to (3-d) camera coordinates can now be
constructed by adjoining the three unit column vectors in the directions of the
coordinate axes:

ˆR = x ŷ ẑ (12)

where x̂, ŷ , ẑ are unit column vectors constructed from T , as described above.

Recovery of Translation

To complete the analysis, we find the position of the origin of the object coordinate
system in the camera coordinate system. The homogeneous coordinates of the
origin in the object plane are obviously just (0, 0, 1)T . Multiplying T by this
vector yields (t13, t23, t33)T . The image of the origin of the object coordinate
system then is at (t13/t33, t23/t33)T . Connecting the origin to this point in the
image plane (z = f), yields a vector parallel to

t = (t13, t23, f t33)
T . (13)

So it is easy to find the direction of the translational vector to the object origin
directly from the last column of T .

√

7

We can find the distance to the object origin from the center of projection if
we can determine the magnification of a line parallel to the image plane at that
distance (that is, the ratio of the length of the line in the image to the length of
the line on the object). If the magnification is M (typically less than one), then
the z-component of the translation vector must be f/M . We can use this value
to scale the direction vector t found above.

A line in the object plane that is parallel to the image plane must be perpen-
dicular to the camera coordinate system z-axis and also perpendicular to a normal
of the object plane. Such a vector can be found by taking the cross-product of the
camera system z-axis (0, 0, 1)T , and a normal to the object plane (i.e. the z-axis
of the object coordinate system found above). If the latter is (z1, z2, z3)T , then
taking the cross-product with (0, 0, 1)T yields the vector (−z2, z1, 0)

T . The third
component of this vector is zero, as it must be if it is to be parallel to the image
plane. It is similarly easy to verify that it actually lies in the object plane.

We can use the matrix T to map the point with homogeneous coordinates
(−z2, z1, 1)

T into the image plane. The length of the line from the image of this
point to the image (t13/t33, t23/t33)T of the origin of the object coordinate system
can be easily computed. The magnification M can be obtained by dividing this
length by the length of the line on the object, which is obviously just

2 2z + z2 .1

Once we know the magnification M we can determine the translational offset of
the object origin from the camera origin by multiplying t = (t13, t23, f t33)T by
M/(f t33).

Analysis

Most homogeneous transform matrices T do not correspond to perspective pro-
jections of a (rotated and translated) plane. So one may wonder how we were able
to compute a coordinate system transformation as above based on the model of
perspective projection. The answer is that we selectively neglected some of the
information in the matrix T . In fact, if we now construct a T ′ based on the
recovered “rotation matrix’’ R, the translation t and perspective projection, we
will find that in general T ′ is not equal to T . The reconstructed T ′ is only equal
to the original T when there are no measurement errors.

A way this problem manifests itself is that the “rotation matrix’’ R con-
structed above is typically not orthonormal. This is because when we estimate
the directions of the x- and y-axes above, there is no guarantee that they be or-
thogonal. We construct them from the first two columns of the matrix T and so
should find that the dot-product of (t11, t21, f t31)T and (t12, t22, f t32)T be zero
(eq. 8). There is, however, nothing in the method used to determine the matrix T

8

(see Appendix A) that enforces this constraint. The same goes for the non-linear
constraint on the magnitude of the vectors derived from the first two columns of
T by multiplying the third component by f (eq. 9).

The fact that the directions of the x- and y-axes of the object do not end
up being orthogonal presents a practical problem for this method. One can at-
tempt to get around this problem by approximation. That is, one finds a real
transformation that is “near’’ the physically unrealizable transformation repre-
sented by the matrix T . In the case of non-orthogonal axis, it is possible to make
adjustments to the two axes in order to make them orthogonal. The smallest
adjustments that makes the vectors orthogonal are those obtained by a suitable
choice of α in

x ′ = x + αy and y ′ = y + αx. (14)

Finding the appropriate multiple involves solving

α2(x · y) + α(x · x + y · y) + x · y = 0 (15)

(which happens to be numerically badly conditioned because x · y is small). The
need for this “work around’’ clearly illustrates one disadavantage of using the
projective geometry approach to solving this problem. The same can be said
about the second non-linear constraint on the elements of T .

Of even more serious practical concern is the related disadvantage of higher
sensitivity to noise. If the positions of corresponding object and image points were
known exactly, then the matrix T would satisfy the two non-linear constraints and
the above analysis would yield the correct solution. In practice, however, there
are always small errors in measurement of image positions. Using the corrupted
measurements of four points, we can still always find a matrix T that exactly
maps the four object points into the four image measurements.

However, there will in general be no rotation and translation plus perspective
projection that does this. When we follow the procedure above to determine the
real attitude and position of the object plane we find a perspective transformation
that will not map the four object points into the image points exactly (because
no such transformation exists). Perhaps more importantly, the rotation and
translation estimated this way are more seriously affected by measurement error
than they would be if the true perspective projection had been modeled, as we
see next.

Minimizing the Image Projection Error

An alternative to the projective geometry approach is one based on true perspec-
tive projection. This leads to non-linear equations, but correctly models a real
camera. We are given the coordinates of a set of object points and the corre-
sponding image coordinates. The task is to find the rotation R and translation t

′

9

of the object that allows perspective projection to image the object points where
they are actually observed.

With more than three correspondences between object points and image
points, there will generally be no rotation R and translation t that map the ob-
ject points exactly into the corresponding image points. This leads to an error
minimization problem.

As a measure of the “mismatch’’ we can use the sum of the squares of
the differences between predicted positions of images of object points and the
corresponding measured positions. Such a method is optimal if the measurement
errors in image position are independent and have a Gaussian distribution, and
if we assume that we know the coordinates of the object points accurately.

We would like to find a transformation that makes the total error as small as
possible. The ad hoc method based on homogeneous transform described above
does not yield this minimum. That is, in general a rigid body transformation can
be found that has lower overall error in predicting where object points will be
imaged — typically a lot lower.

One can apply the Newton-Raphson method to find the rotation and trans-
lation that minimizes the sum of squares of the total image projection errors. The
first and second derivatives of the error with respect to the unknown parameters
can be estimated numerically. This brings up the question of what parameters
to use to describe the translation and rotation. Naturally, the nine elements of
the orthonormal rotation matrix cannot be used as parameters since they are not
independent. In our view, Euler angles are also unsatisfactory because of the
singularities that arise [Horn 87, 90, 91]. So are several other commonly used
representation for rotation.

As demonstrated elsewhere [Horn 87, 90, 91], unit quaternions have several
advantages when used to representation rotations. The unit quaternion notation
is redundant, since it depends on four numbers to represent rotation. However,
the single constraint that a quaternion be a unit quaternion is much easier to
handle than the six constraints required to ensure that a matrix is orthonormal
(and the one condition that ensures it represents a rotation instead of a reflection).

For purposes of the numerical optimization using the Newton-Raphson
method, it is convenient to pick the three components of the “vector’’ part q
of the quaternion as the parameters to vary — computing the “scalar’’ part q0

always to maintain the unit quaternion constraint q̊ · q̊ = 1, where q̊ = (q0, q).
The gradient g of the total error with respect to the parameters p has six

components (three for rotation parameters and three for translation parameters),
The Hessian H (matrix of second derivatives of the total error) is a 6 × 6 matrix.
The new guess for the parameters is given by

p = p − H −1 g. (16)

10

With a reasonable first guess this process converges to machine precision with
a very small number of steps. A reasonable first guess can be obtained, for
example, using the projective geometry method described above. An alternative
is to sample the space of rotations systematically (using e.g. the rotation group
of the icosahedron) or sample the rotation space randomnly for starting guesses.

Monte Carlo simulation experiments

Simulation experiments show that the solution based on minimizing the total
image error can reduce the error by over an order of magnitude in typical sit-
uations compared to the approximation obtained from the projective geometry
based method discussed earlier (details depend on the parameters of the camera
and the object distance).

One may question whether minimizing the error in predicting where object
points appear in the image improves the accuracy with which one can determine
the object coordinate system. More significant from the point of view of some
applications in robotics or industrial automation is the error in the rotation matrix
R which has all the information on the orientation of the object. Similarly one
may want to know what the error in the translation is.

One issue is how to summarize the error in the recovered object system
attitude. Let the true rotation of the object coordinate system (with respect to
the camera coordinate system) be R1 and the estimated rotation be R2. Then a
good measure of dissimilarity is how far one would have to rotate one to bring
it into alignment with the other. That is, the ‘size’ of the rotation given by
dR = R1R

T
2 . Any rotation — including dR — can be expressed as a rotation

about some axis ω through an angle δθ . The axis and angle can be determined
from the rotation matrix — most easily by first recovering the unit quaternion
(Note also that Trace(dR) = 1 + 2 cos δθ). A simple measure of the dissimilarly
in attitude is the angle δθ computed from dR.

Simulation experiments show that the solution based on minimizing the
image error in perspective projection (as described above) reduces the error in
orientation (defined as in the last paragraph) by over an order of magnitude in
typical situations. The same goes for the error in translation.

In a particular simulation, we chose an object plane with four points at the
corners of a square with 168 mm edges, located 1600 mm from a camera with
focal length 18 mm. The image pixels are 8.4 µm × 8.4 µm. The object plane is
rotated such that its normal makes an angle of 60 degrees with the optical axis.
It is assumed that the error in image position determination is 1/5th of a pixel
The average error in object attitude using the projective geometry method is 4.3

11

degrees, while the average error using the true perspective projection method is
0.18 degrees.

Note also that the projective geometry method needs a minimum of four
points, while the perspective projection method can work with a minimum of
three (non-colinear) points. If there are three points, we can use Church’s method
(see Appendix B) to solve the exterior orientation problem [Church 45, Fischler
& Bolles 80]. Even with three points, the method has an error of only 0.23 degrees
in attitude — still very much less than the error found when using the projective
geometry based method with four points.

When N > 4 points are used, the attitude error is reduced in both cases, but
the overwhelming advantage of correctly modeling image projection is retained.
The key point is that under all conditions tested, the average error in the projective
geometry based solution was over an order of magnitude larger than that in the
perspective projection based method.

Summary

(i)	 Methods based on projective geometry are fundamentally different from
methods based on perspective projection;

(ii)	 Methods based on projective geometry yield a transformation matrix T that
in general does not correspond to a physical imaging situation — that is, a
rotation, translation and perspective projection;

(iii) Optimization methods based on the real physical imaging equations (true
perspective projection) produce considerably more accurate results.

12

References

1.	 Church, E. (1945) “Revised Geometry of the Aerial Photograph,’’ Bulletin
of Aerial Photogrammetry, No. 15, Syracuse University.

2.	 Dijkstra, E.W. (1968) “Go To Statement Considered Harmful,’’ Communi-
cations of the ACM, Vol. 11, No. 3, pp. 147–148, March.

3.	 Fischler, M.A. and R.C. Bolles (1980) “Random Sample Consensus: A
Paradigm for Model Fitting with Applications to Image Analysis and Auto-
mated Cartography,’’ DARPA Image Understanding Workshop, April 1980,
pp. 71—88.

4.	 Hartley, R.I. (1997a) “Kruppa’s Equations Derived from the Fundamental
Matrix,’’ IEEE Transactions on Pattern Analysis and Machine Intelligence,
Vol. 19, No. 2, February.

5.	 Hartley, R.I. (1997b) “In Defense of the Eight-Point Algorithm,’’ IEEE
Transations of Pattern Analysis and Machine Intelligence, Vol. 19, No. 6,
June.

6.	 Horn, B.K.P. (1986) Robot Vision, MIT Press and McGraw-Hill

7.	 Horn, B.K.P. (1987) “Closed Form Solution of Absolute Orientation using
Unit Quaternions,’’ Journal of the Optical Society A, Vol. 4, No. 4, pp. 629–
642, April.

8.	 Horn, B.K.P. (1990) “Relative Orientation,’’ International Journal of Com-
puter Vision, Vol. 4, No. 1, pp. 59–78, January.

9.	 Horn, B.K.P. (1991) “Relative Orientation Revisited,’’ Journal of the Optical
Society of America, A, Vol. 8, pp. 1630–1638. October.

10.	 Longuett-Higgins, H.C. (1981) “A Computer Program to Reconstruct a
Scene from Two Projections,’’ Nature, Vol. 293, pp. 133–135, September

11.	 Quan, L. and Z. Lan (1999) “Linear N-Point Camera Pose Determination,’’
IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 21,
No. 8, August.

12.	 Slama, C.C. (ed.) (1980) Manuals of Photogrammetry, 4th edition, American
Society of Photogrammetry

13.	 Wolf, P.R. (1974) Elements of Photogrammetry, McGraw-Hill

14.	 Wylie, C.R. Jr. (1970) Introduction to Projective Geometry, McGraw-Hill

13

Appendix A: Finding the matrix T from correspondences

From each correspondence between a point in the object plane at (xi , yi , 1)
T and

a point in the image plane at (kui , kvi , k)
T we get two equations by eliminating

k (section 13.7 in [Horn 86]):

xi t11 + yi t12 + t13 − xi ui t31 − yi ui t32 − ui t33 = 0
(17)

xi t21 + yi t22 + t23 − xi vi t31 − yi vi t32 − vi t33 = 0

Four correspondences yield a system of eight homogeneous equations:      0
x1 y1 1 0 0 0 −x1u1 −y1u1 −u1

 t11   0  t12  x2 y2 1 0 0 0 −x2u2 −y2u2 −u2         0    x3 y3 1 0 0 0 −x3u3 −y3u3 −u3
 t13      0    t21     x4 y4 1 0 0 0 −x4u4 −y4u4 −u4       t22  =  0  (20)  0 0 0 x1 y1 1 −x1v1 −y1v1 −v1       t23   0   0 0 0 x2 y2 1 −x2v2 −y2v2 −v2       t31   0   0 0 0 x3 y3 1 −x3v3 −y3v3 −v3       0 

0 0 0 x4 y4 1 −x4v4 −y4v4 −v4
 t32

t33 0

While the matrix T has nine elements, there are only eight degrees of freedom
since any non-zero multiple of T describes the same mapping between the two
planes. So we can arbitrarily pick a value for one element of T , say t33 = 1. This
moves the last column of the matrix above to the right-hand side (with change of
sign) and leaves us with eight (non-homogeneous) equations in eight unknown.

The matrix has a distinctive structure, with two 4 × 3 blocks of zeros, which
can be exploited to partition the matrix.

The transformation matrix T can also be found using the fundamental the-
orem of projective geometry — which states that four 3-vectors must be linearly
dependent. This reduces the computation to solving three sets of three equa-
tions instead of a single set of eight equations in eight unknowns [Appendix B of
Fischler & Bolles 80].

If there are N > 4 correspondences, we end up with more equations than
unknowns. We can find a solution that minimizes the sum of squares of errors in
these equations using the pseudo-inverse of the 2n × 8 coefficient matrix. Note
however, that what is minimized is not the sum of squares of errors in image
position, but the error in homogeneous coordinates ui and vi , that is, some
arbitrary multiples of image position — different multiples for different i. Which
is obviously not the best “error’’ to minimize.

′

14

Appendix B: Church’s Method for Three Correspondences

Exterior orientation can be recovered using just three correspondences (the pro-
jective geometry method requires four correspondences because it ignores two
non-linear constraints that arise in true perspective projection). One way to
solve the problem using three correspondences is the “tripod method’’ of Church
[Church 45, Appendix A in Fischler & Bolles 80]. We first solve for the lengths of
the three legs r1, r2, r3 measured from the center of projection to the three points
on the object using the equations:

2 2 r + r2 − 2r1r2 cos θ12 − d 2 = 01 12

2 2 r2 + r3 − 2r2r3 cos θ23 − d 2 = 0 (21)23

2 2 r + r1 − 2r3r1 cos θ31 − d 2 = 03 31

Here d12, d23, and d31 are the known pairwise distances between the three points
on the object, while θ12, θ23, and θ31 are the known angles between rays from the
center of projection to these points. The cosines of these angles can be readily
found by taking dot-products of vectors from the center of projection (0, 0, 0)T

to the corresponding points in the image plane (z = f) after normalizing their
lengths.

The three unknown lengths r1, r2, r3 can be recovered using a simple it-
erative scheme to solve the non-linear equations above. Let an error vector
e = (e1, e2, e3)T be defined where e1, e2 and e3 are the left hand sides of the
three equations above. Let D be the 3 × 3 matrix of first derivatives of com-
ponents of e with respect to the unkown r1, r2, and r3. Then given a guess
r = (r1, r2, r3)T , we compute a new value using

r = r − D−1 e (22)

This process converges quickly given reasonable initial guesses. However, up to
four different positive solutions may exist.

Once the lengths of the ‘legs’ are known, the position of the three object
points in the camera coordinate system can be found simply by multiplying unit
vectors in the directions to the corresponding image points by r1, r2, and r3.

At this point the coordinates of three points are known both in the object
coordinate system and in the camera coordinate system. This makes it possible to
recover the rotation and translation that maps from the object coordinate system
to the camera coordinate system. We have

ci = Roi + t (23)

for i = 1, 2, and 3. We can eliminate the translation t by subtracting coordinates
to obtain

(c2 − c1) = R(o2 − o1)
(24)

(c3 − c2) = R(o3 − o2)

15

We also have () ()
(c3 − c2) × (c2 − c1) = R (o3 − o2) × (o2 − o1) (25)

We can combine these equalities into one equation Mc = RMo where ()
Mc = c2 − c1 c3 − c2 (c3 − c2) × (c2 − c1)

Mo =
(

o2 − o1 o3 − o2 (o3 − o2) × (o2 − o1)
) (26)

and so R = Mc Mo
−1. Finally we can recover the translation using

t = c − Ro (27)

where o and c are the averages of the three coordinates in the object and the
camera coordinate system respectively.

