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Introduction 

Methods based on projective geometry have become popular in machine vision 
because they lead to elegant mathematics, and easy-to-solve linear equations 
[Longuett-Higgins 81, Hartley 97a, Quan & Lan 99]. It is often not realized 
that one pays a heavy price for this. Such method do not correctly model the 
physics of image formation and as a result require more correspondences and are 
considerably more sensitive to measurement error than methods based on true 
perspective projection. 

Projective geometry based methods are rarely used in photogrammetry [Wolf 
74, Slama 80]. There the cost of acquiring the data is high and every effort is made 
to extract information about the scene and about the image taking geometry that 
is as accurate as possible. 

Since linear equations are easier to solve, there may appear to be an advan-
tage in computational cost, but this advantage — if any — has been eroded by 
the reduced cost and increased speed of computation. Given the noisy nature of 
image measurements, one simply cannot afford to throw away accuracy. 

The issue of the limitations of projective geometry when applied to pho-
togrammetric problems has been raised before, particuarly in the context of the 
relative orientation problem that arises in binocular stereo [Hartley 97b]. But rel-
ative orientation is a relatively complex problem where it is hard to gain insight 
from simple geometric arguments or numerical experiments. As a result, not all 
researchers have been persuaded that methods based on projective geometry are 
in fact inferior. Still, it is hard to see the attraction of linear methods for relative 
orientation, since good methods for solving the least squares problem of relative 
orientation do exist [Horn 90, 91]. 

We revisit this topic here in the context of a simpler problem, that of exterior 
orientation with respect to a planar object. We examine the difference between 
the mapping from the object plane to the image plane defined by true perspective 
projection and that defined by projective geometry. We show that virtually none 
of the transformations allowed by projective geometry correspond to real camera 
image-taking situations. 
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We then compare the algorithms and study the sensitivity to noise using 
Monte Carlo methods and show that the error sensitivity of projective geometry 
based methods is much higher. 

Projective Geometry versus Perspective Projection. 

The true mapping from coordinates in the object coordinate system to image 
coordinates consists of two steps: 

(i) Rigid body transformation of the object coordinate system into the camera 
coordinate system. Rigid body transformations are combinations of rota-
tion and translation. If, for now, we use orthonormal matrices to represent 
rotation, we can write       

xc xt xo  yc   yt   yo  = R + (1) 
zc zt zo 

where R is orthonormal and represents rotation, while t = (xo, yo, zo)
T is the 

translation (position of the object coordinate system origin in the camera 
coordinate system). Orthonormality implies RT R = I . This equation 
imposes six independent non-linear constraints on the 9 elements of the 
3 × 3 matrix R. In addition, for R to represent a rotation (rather than a 
reflection), we also need det(R) = +1, 

(ii) Perspective projection 

u = f (xc /zc ) + uo 
(2) 

v = f (yc /zc ) + vo 

where f is the principal distance (effective focal length) and (uo, vo)
T is the 

principal point (base of perpendicular dropped from the center of projection 
to the image plane). The interior orientation of the camera is summarized 
in the vector (uo, vo, f  )T from the center of projection to the principal point 
in the image plane. 

For simplicity, we now consider a planar object, where we can for convenience 
arrange the object coordinate system such that zt = 0 in the plane of the object. 
If we write out the elements of the rotation matrix we find:         

xc r11 r12 r13 xt xo  yc  =  r21 r22 r23   yt  + yo  . (3) 
zc r31 r32 r33 0 zo 

Absorbing the translation (xo, yo, zo)
T into the 3 × 3 matrix and dividing the 
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third component by f we get:       
xc r11 r12 xo xt  yc  =  r21 r22 yo   yt  . (4) 

zc /f r31/f r32/f zo/f 1 

Note that this equation involves a vector (xt , yt , 1)
T , unlike the previous equation 

using (xt , yt , 0)
T (This makes it easier to match this result with the projective 

geometry formulation). Now perspective projection (eq. 2) gives us      
k(u − uo) r11 r12 xo xt  k(v − vo)  =  r21 r22 yo  yt  , (5) 

k r31/f r32/f zo/f 1 

where k = zc /f . We write the equation in this unusual form to make it easier 
to identify terms with those occuring in the equations that arise in projective 
geometry — to be discussed next. 

The homogeneous representation of a point in a plane uses three numbers 
(u, v, w)T [Wylie 70]. The actual planar coordinates are obtained by dividing the 
first two elements by the third: x = u/w, and y = v/w. Naturally, this repre-
sentation is not unique, since any non-zero multiple (ku, kv, kw)T corresponds 
to the same position in the plane. Homogeneous coordinates are used because 
they make it easier to apply the methods of projective geometry. 

A 3 × 3 matrix T represents a homogeneous transformation from the object 
plane to the image plane. T multiplied by a 3-vector (xt , yt , 1)

T representing 
position in the object plane yields a 3-vector (ku, kv, k)T that represents the 
corresponding position in the image plane — both in homogeneous coordinates:      

ku t11 t12 t13 xt  kv   yt  =  t21 t22 t23 (6) 
k t31 t32 t33 1 

This matches the equation for true perspective geometry provided we set up the 
elements of the matrix T as follows: 

t11 = r11, t12 = r12, t13 = xo 

t21 = r21, t22 = r22, t23 = yo (7) 

t31 = r31/f, t32 = r32/f, t33 = zo/f 

In addition, for this identification of transformation formulas to work, measure-
ments in the image must be made in a coordinate system with the origin at the 
principal point (so that uo, vo = 0). Keep in mind that any non-zero multiple 
of the matrix T in the above equation describes the same projective geometric 
relationship (i.e. there is a scale factor ambiguity). 

What is important to note from the above is that if T is to represent a real 
perspective projection of the object plane into the image plane then it must satisfy 
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two non-linear constraints


t11t12 + t21t22 + f 2t31t32 = 0 (8) 

and 
t11t11 + t21t21 + f 2t31t31 = t12t12 + t22t22 + f 2t32t32 (9) 

which follow directly from the orthonormality of the first two columns of the 
rotation matrix R. 

Given the scale factor ambiguity, we can arbitrarily pick t33 = 1 and choose 
the other eight elements of T independently. (We can do this unless the object 
coordinate system origin lies in the image plane, since if t33 = 0, the origin of the 
object coordinate system (0, 0, 1)T is transformed by T into a coordinate with 
zero third component, that is, a point at infinity in the image plane). 

The above two non-linear constraints reduce the degrees of freedom further 
from eight to six, which is as it should be, since rotation has three degrees of 
freedom and translation has three. Hence there are really only six independent 
variables, not eight. 

We can always find a matrix T corresponding to a real perspective projection 
(if we assume that the principal point is known), using the equations above, 
but in general it is not possible to go in the other direction, that is, to find a 
perspective projection that corresponds to an arbitrary matrix T . That is, almost 
all homogeneous transformations T have the property that they do not allow a 
physical interpretation in terms of rigid body motion and perspective projection. 

Importantly, an arbitrary 3 × 3 matrix T will not satisfy the two non-linear 
constraint and hence can not represent a true perspective projection. Examples 
of mappings allowed by projective geometry but not by perspective projection are 
skewing and anisotropic scaling. If, for example, we distort a normal perspective 
image by the additional operations 

1 s  1 0  
or

0 1  0 k  

applied to the image coordinates (xi , yi )
T then in general we will have an “image’’ 

that could not have been obtained from any position with any camera orientation. 
Yet such distortions merely change the elements of T and thus are permitted by 
projective geometry. 

One may wonder whether there is a physical imaging situation that does 
correspond to a homogeneous transformation by an unconstrained matrix T . 
There is: 

The transformations of perspective geometry correspond to taking a perspective 
image of a perspective image. 

In this case, we obtain an overall transformation that need not satisfy the two non-
linear constraints. (Interestingly, the transformation is not further generalized 
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by taking a picture of a picture of a picture). But in any case we are typically 
interested in a “direct’’ image, not a picture taken of a picture. 

If one finds a transformation T that best fits the data without imposing the 
nonlinear constraints, one is left with the problem of finding the rigid body trans-
formation R and t “nearest’’ to the linear transformation T . Without imposing 
the two constraints, the “solution’’ can adjust to measurement errors in ways that 
increase the error in the “nearest’’ rigid body transformation. 

Estimating Object Attitude and Position using Projective Geometry 

There are two distinct steps: 

(i) the determinination of a projective geometry transformation T that maps 
points in the object plane into points in the image plane; and 

(ii) finding an orientation (rotation R) and position (translation t) of the object 
coordinate system expressed in terms of the camera coordinate system that 
approximates the transformation T . 

Both parts can be dealt with using homogeneous coordinate notation. See Ap-
pendix A for details of recovering T (part (i)). 

Recovery of Orientation 

A simple method for the recovery of the orientation and position of the object 
coordinate system in the camera coordinate system from T can be derived using 
the concept of vanishing points. 

A straight line on the object maps into a straight line in the image under 
perspective projection. However, if we move along the line in the object at a 
constant rate, we do not move along the corresponding image line at a constant 
rate. The movement slows down and approaches a limit as we go off to infinity 
along the line in the object plane. This limiting point is called the vanishing point 
for that object line. 

Consider the homogeneous 3-vector (αa, αb, 1)T as α → ∞. This is clearly 
just the same as (a, b, 0)T . It follows that the vanishing point for a line with 
direction (a, b)T in the object plane is 

u = (t11a + t12b)/(t31a + t32b) 
(10) 

v = (t21a + t22b)/(t31a + t32b) 

Importantly, if we construct a line from the center of projection ((0, 0, 0)T ) of the  
camera to the vanishing point in the image plane (z = f ), we have a line that is 
parallel (in three dimensions) to the line on the object. We can apply this idea 
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to the x- and y-axes of the object, and from the two vanishing points find the 
directions of these two axes in the camera coordinate system. 

The vanishing point for the x-axis is just (1, 0, 0)T in the object coordi-
nate system. Multiplying the matrix T by this vector yields the homogeneous 
image coordinate (t11, t21, t31)T . Similarly, we get (t12, t22, t32)T from (0, 1, 0)T 

for the y-axis. These two correspond to image coordinates (t11/t31, t21/t31)T 

and (t12/t32, t22/t32)T respectively (Points in the image, when written as vectors 
in the camera coordinate system, have the third component equal to f . For  
convenience we drop this constant component and write image positions using 
2-vectors). 

If we connect the center of projection to these points in the image plane we 
obtain direction vectors parallel to 

x = (t11, t21, f  t31)
T , 

(11) 
y = (t12, t22, f  t32)

T . 

We can divide these two vectors by their magnitude to obtain unit vectors x̂ ad ŷ
in the direction of the x- and y-axes of the object plane (expressed in the camera 
coordinate system). So it is easy to find the directions of the two object coordinate 
system axes (expressed in the camera coordinate system) directly from the first 
two columns of T (provided the principal distance f is known). 

Since the z-axis — perpendicular to the object plane — has to be at right 
angles to any line in the object plane, we can find its direction simply by taking 
the cross-product of the directions of the x- and y-axes found above. A rotation 
matrix relating (3-d) object coordinates to (3-d) camera coordinates can now be 
constructed by adjoining the three unit column vectors in the directions of the 
coordinate axes: 

ˆR = x ŷ ẑ (12) 

where x̂, ŷ , ẑ are unit column vectors constructed from T , as described above. 

Recovery of Translation 

To complete the analysis, we find the position of the origin of the object coordinate 
system in the camera coordinate system. The homogeneous coordinates of the 
origin in the object plane are obviously just (0, 0, 1)T . Multiplying T by this 
vector yields (t13, t23, t33)T . The image of the origin of the object coordinate 
system then is at (t13/t33, t23/t33)T . Connecting the origin to this point in the 
image plane (z = f ), yields a vector parallel to 

t = (t13, t23, f  t33)
T . (13) 

So it is easy to find the direction of the translational vector to the object origin 
directly from the last column of T . 
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We can find the distance to the object origin from the center of projection if 
we can determine the magnification of a line parallel to the image plane at that 
distance (that is, the ratio of the length of the line in the image to the length of 
the line on the object). If the magnification is M (typically less than one), then 
the z-component of the translation vector must be f/M . We can use this value 
to scale the direction vector t found above. 

A line in the object plane that is parallel to the image plane must be perpen-
dicular to the camera coordinate system z-axis and also perpendicular to a normal 
of the object plane. Such a vector can be found by taking the cross-product of the 
camera system z-axis (0, 0, 1)T , and a normal to the object plane (i.e. the z-axis 
of the object coordinate system found above). If the latter is (z1, z2, z3)T , then 
taking the cross-product with (0, 0, 1)T yields the vector (−z2, z1, 0)

T . The third 
component of this vector is zero, as it must be if it is to be parallel to the image 
plane. It is similarly easy to verify that it actually lies in the object plane. 

We can use the matrix T to map the point with homogeneous coordinates 
(−z2, z1, 1)

T into the image plane. The length of the line from the image of this 
point to the image (t13/t33, t23/t33)T of the origin of the object coordinate system 
can be easily computed. The magnification M can be obtained by dividing this 
length by the length of the line on the object, which is obviously just 

2 2z + z2 .1 

Once we know the magnification M we can determine the translational offset of 
the object origin from the camera origin by multiplying t = (t13, t23, f  t33)T by 
M/(f t33). 

Analysis 

Most homogeneous transform matrices T do not correspond to perspective pro-
jections of a (rotated and translated) plane. So one may wonder how we were able 
to compute a coordinate system transformation as above based on the model of 
perspective projection. The answer is that we selectively neglected some of the 
information in the matrix T . In fact, if we now construct a T ′ based on the 
recovered “rotation matrix’’ R, the translation t and perspective projection, we 
will find that in general T ′ is not equal to T . The reconstructed T ′ is only equal 
to the original T when there are no measurement errors. 

A way this problem manifests itself is that the “rotation matrix’’ R con-
structed above is typically not orthonormal. This is because when we estimate 
the directions of the x- and y-axes above, there is no guarantee that they be or-
thogonal. We construct them from the first two columns of the matrix T and so 
should find that the dot-product of (t11, t21, f  t31)T and (t12, t22, f  t32)T be zero 
(eq. 8). There is, however, nothing in the method used to determine the matrix T 
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(see Appendix A) that enforces this constraint. The same goes for the non-linear 
constraint on the magnitude of the vectors derived from the first two columns of 
T by multiplying the third component by f (eq. 9). 

The fact that the directions of the x- and y-axes of the object do not end 
up being orthogonal presents a practical problem for this method. One can at-
tempt to get around this problem by approximation. That is, one finds a real 
transformation that is “near’’ the physically unrealizable transformation repre-
sented by the matrix T . In the case of non-orthogonal axis, it is possible to make 
adjustments to the two axes in order to make them orthogonal. The smallest 
adjustments that makes the vectors orthogonal are those obtained by a suitable 
choice of α in 

x ′ = x + αy and y ′ = y + αx. (14) 

Finding the appropriate multiple involves solving 

α2(x · y ) + α(x · x + y · y ) + x · y = 0 (15) 

(which happens to be numerically badly conditioned because x · y is small). The 
need for this “work around’’ clearly illustrates one disadavantage of using the 
projective geometry approach to solving this problem. The same can be said 
about the second non-linear constraint on the elements of T . 

Of even more serious practical concern is the related disadvantage of higher 
sensitivity to noise. If the positions of corresponding object and image points were 
known exactly, then the matrix T would satisfy the two non-linear constraints and 
the above analysis would yield the correct solution. In practice, however, there 
are always small errors in measurement of image positions. Using the corrupted 
measurements of four points, we can still always find a matrix T that exactly 
maps the four object points into the four image measurements. 

However, there will in general be no rotation and translation plus perspective 
projection that does this. When we follow the procedure above to determine the 
real attitude and position of the object plane we find a perspective transformation 
that will not map the four object points into the image points exactly (because 
no such transformation exists). Perhaps more importantly, the rotation and 
translation estimated this way are more seriously affected by measurement error 
than they would be if the true perspective projection had been modeled, as we 
see next. 

Minimizing the Image Projection Error 

An alternative to the projective geometry approach is one based on true perspec-
tive projection. This leads to non-linear equations, but correctly models a real 
camera. We are given the coordinates of a set of object points and the corre-
sponding image coordinates. The task is to find the rotation R and translation t 
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of the object that allows perspective projection to image the object points where 
they are actually observed. 

With more than three correspondences between object points and image 
points, there will generally be no rotation R and translation t that map the ob-
ject points exactly into the corresponding image points. This leads to an error 
minimization problem. 

As a measure of the “mismatch’’ we can use the sum of the squares of 
the differences between predicted positions of images of object points and the 
corresponding measured positions. Such a method is optimal if the measurement 
errors in image position are independent and have a Gaussian distribution, and 
if we assume that we know the coordinates of the object points accurately. 

We would like to find a transformation that makes the total error as small as 
possible. The ad hoc method based on homogeneous transform described above 
does not yield this minimum. That is, in general a rigid body transformation can 
be found that has lower overall error in predicting where object points will be 
imaged — typically a lot lower. 

One can apply the Newton-Raphson method to find the rotation and trans-
lation that minimizes the sum of squares of the total image projection errors. The 
first and second derivatives of the error with respect to the unknown parameters 
can be estimated numerically. This brings up the question of what parameters 
to use to describe the translation and rotation. Naturally, the nine elements of 
the orthonormal rotation matrix cannot be used as parameters since they are not 
independent. In our view, Euler angles are also unsatisfactory because of the 
singularities that arise [Horn 87, 90, 91]. So are several other commonly used 
representation for rotation. 

As demonstrated elsewhere [Horn 87, 90, 91], unit quaternions have several 
advantages when used to representation rotations. The unit quaternion notation 
is redundant, since it depends on four numbers to represent rotation. However, 
the single constraint that a quaternion be a unit quaternion is much easier to 
handle than the six constraints required to ensure that a matrix is orthonormal 
(and the one condition that ensures it represents a rotation instead of a reflection). 

For purposes of the numerical optimization using the Newton-Raphson 
method, it is convenient to pick the three components of the “vector’’ part q 
of the quaternion as the parameters to vary — computing the “scalar’’ part q0 

always to maintain the unit quaternion constraint q̊ · q̊ = 1, where q̊ = (q0, q). 
The gradient g of the total error with respect to the parameters p has six 

components (three for rotation parameters and three for translation parameters), 
The Hessian H (matrix of second derivatives of the total error) is a 6 × 6 matrix. 
The new guess for the parameters is given by 

p = p − H −1 g. (16) 
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With a reasonable first guess this process converges to machine precision with 
a very small number of steps. A reasonable first guess can be obtained, for 
example, using the projective geometry method described above. An alternative 
is to sample the space of rotations systematically (using e.g. the rotation group 
of the icosahedron) or sample the rotation space randomnly for starting guesses. 

Monte Carlo simulation experiments 

Simulation experiments show that the solution based on minimizing the total 
image error can reduce the error by over an order of magnitude in typical sit-
uations compared to the approximation obtained from the projective geometry 
based method discussed earlier (details depend on the parameters of the camera 
and the object distance). 

One may question whether minimizing the error in predicting where object 
points appear in the image improves the accuracy with which one can determine 
the object coordinate system. More significant from the point of view of some 
applications in robotics or industrial automation is the error in the rotation matrix 
R which has all the information on the orientation of the object. Similarly one 
may want to know what the error in the translation is. 

One issue is how to summarize the error in the recovered object system 
attitude. Let the true rotation of the object coordinate system (with respect to 
the camera coordinate system) be R1 and the estimated rotation be R2. Then a 
good measure of dissimilarity is how far one would have to rotate one to bring 
it into alignment with the other. That is, the ‘size’ of the rotation given by 
dR = R1R

T 
2 . Any rotation — including dR — can be expressed as a rotation 

about some axis ω through an angle δθ . The axis and angle can be determined 
from the rotation matrix — most easily by first recovering the unit quaternion 
(Note also that Trace(dR) = 1 + 2 cos δθ ). A simple measure of the dissimilarly 
in attitude is the angle δθ computed from dR. 

Simulation experiments show that the solution based on minimizing the 
image error in perspective projection (as described above) reduces the error in 
orientation (defined as in the last paragraph) by over an order of magnitude in 
typical situations. The same goes for the error in translation. 

In a particular simulation, we chose an object plane with four points at the 
corners of a square with 168 mm edges, located 1600 mm from a camera with 
focal length 18 mm. The image pixels are 8.4 µm × 8.4 µm. The object plane is 
rotated such that its normal makes an angle of 60 degrees with the optical axis. 
It is assumed that the error in image position determination is 1/5th of a pixel 
The average error in object attitude using the projective geometry method is 4.3 
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degrees, while the average error using the true perspective projection method is 
0.18 degrees. 

Note also that the projective geometry method needs a minimum of four 
points, while the perspective projection method can work with a minimum of 
three (non-colinear) points. If there are three points, we can use Church’s method 
(see Appendix B) to solve the exterior orientation problem [Church 45, Fischler 
& Bolles 80]. Even with three points, the method has an error of only 0.23 degrees 
in attitude — still very much less than the error found when using the projective 
geometry based method with four points. 

When N > 4 points are used, the attitude error is reduced in both cases, but 
the overwhelming advantage of correctly modeling image projection is retained. 
The key point is that under all conditions tested, the average error in the projective 
geometry based solution was over an order of magnitude larger than that in the 
perspective projection based method. 

Summary 

(i)	 Methods based on projective geometry are fundamentally different from 
methods based on perspective projection; 

(ii)	 Methods based on projective geometry yield a transformation matrix T that 
in general does not correspond to a physical imaging situation — that is, a 
rotation, translation and perspective projection; 

(iii) Optimization methods based on the real physical imaging equations (true 
perspective projection) produce considerably more accurate results. 
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Appendix A: Finding the matrix T from correspondences 

From each correspondence between a point in the object plane at (xi , yi , 1)
T and 

a point in the image plane at (kui , kvi , k)
T we get two equations by eliminating 

k (section 13.7 in [Horn 86]): 

xi t11 + yi t12 + t13 − xi ui t31 − yi ui t32 − ui t33 = 0 
(17) 

xi t21 + yi t22 + t23 − xi vi t31 − yi vi t32 − vi t33 = 0 

Four correspondences yield a system of eight homogeneous equations:      0 
x1 y1 1 0 0 0 −x1u1 −y1u1 −u1 

 t11   0  t12  x2 y2 1 0 0 0 −x2u2 −y2u2 −u2         0    x3 y3 1 0 0 0 −x3u3 −y3u3 −u3 
 t13      0    t21     x4 y4 1 0 0 0 −x4u4 −y4u4 −u4       t22  =  0  (20)  0 0 0 x1 y1 1 −x1v1 −y1v1 −v1       t23   0   0 0 0 x2 y2 1 −x2v2 −y2v2 −v2       t31   0   0 0 0 x3 y3 1 −x3v3 −y3v3 −v3       0  

0 0 0 x4 y4 1 −x4v4 −y4v4 −v4 
 t32 

t33 0 

While the matrix T has nine elements, there are only eight degrees of freedom 
since any non-zero multiple of T describes the same mapping between the two 
planes. So we can arbitrarily pick a value for one element of T , say  t33 = 1. This 
moves the last column of the matrix above to the right-hand side (with change of 
sign) and leaves us with eight (non-homogeneous) equations in eight unknown. 

The matrix has a distinctive structure, with two 4 × 3 blocks of zeros, which 
can be exploited to partition the matrix. 

The transformation matrix T can also be found using the fundamental the-
orem of projective geometry — which states that four 3-vectors must be linearly 
dependent. This reduces the computation to solving three sets of three equa-
tions instead of a single set of eight equations in eight unknowns [Appendix B of 
Fischler & Bolles 80]. 

If there are N >  4  correspondences, we end up with more equations than 
unknowns. We can find a solution that minimizes the sum of squares of errors in 
these equations using the pseudo-inverse of the 2n × 8 coefficient matrix. Note 
however, that what is minimized is not the sum of squares of errors in image 
position, but the error in homogeneous coordinates ui and vi , that is, some 
arbitrary multiples of image position — different multiples for different i. Which 
is obviously not the best “error’’ to minimize. 
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Appendix B: Church’s Method for Three Correspondences 

Exterior orientation can be recovered using just three correspondences (the pro-
jective geometry method requires four correspondences because it ignores two 
non-linear constraints that arise in true perspective projection). One way to 
solve the problem using three correspondences is the “tripod method’’ of Church 
[Church 45, Appendix A in Fischler & Bolles 80]. We first solve for the lengths of 
the three legs r1, r2, r3 measured from the center of projection to the three points 
on the object using the equations: 

2 2 r + r2 − 2r1r2 cos θ12 − d 2 = 01 12 

2 2 r2 + r3 − 2r2r3 cos θ23 − d 2 = 0 (21)23 

2 2 r + r1 − 2r3r1 cos θ31 − d 2 = 03 31 

Here d12, d23, and d31 are the known pairwise distances between the three points 
on the object, while θ12, θ23, and θ31 are the known angles between rays from the 
center of projection to these points. The cosines of these angles can be readily 
found by taking dot-products of vectors from the center of projection (0, 0, 0)T 

to the corresponding points in the image plane (z = f ) after normalizing their 
lengths. 

The three unknown lengths r1, r2, r3 can be recovered using a simple it-
erative scheme to solve the non-linear equations above. Let an error vector 
e = (e1, e2, e3)T be defined where e1, e2 and e3 are the left hand sides of the 
three equations above. Let D be the 3 × 3 matrix of first derivatives of com-
ponents of e with respect to the unkown r1, r2, and r3. Then given a guess 
r = (r1, r2, r3)T , we compute a new value using 

r = r − D−1 e (22) 

This process converges quickly given reasonable initial guesses. However, up to 
four different positive solutions may exist. 

Once the lengths of the ‘legs’ are known, the position of the three object 
points in the camera coordinate system can be found simply by multiplying unit 
vectors in the directions to the corresponding image points by r1, r2, and r3. 

At this point the coordinates of three points are known both in the object 
coordinate system and in the camera coordinate system. This makes it possible to 
recover the rotation and translation that maps from the object coordinate system 
to the camera coordinate system. We have 

ci = Roi + t (23) 

for i = 1, 2, and 3. We can eliminate the translation t by subtracting coordinates 
to obtain 

(c2 − c1) = R(o2 − o1) 
(24) 

(c3 − c2) = R(o3 − o2) 
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We also have ( ) ( ) 
(c3 − c2) × (c2 − c1) = R (o3 − o2) × (o2 − o1) (25) 

We can combine these equalities into one equation Mc = RMo where ( ) 
Mc = c2 − c1 c3 − c2 (c3 − c2) × (c2 − c1) 

Mo = 
( 

o2 − o1 o3 − o2 (o3 − o2) × (o2 − o1) 
) (26) 

and so R = Mc Mo 
−1. Finally we can recover the translation using 

t = c − Ro (27) 

where o and c are the averages of the three coordinates in the object and the 
camera coordinate system respectively. 


