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Abstract: The description of a serial kinematic chain should be unique, 
unambiguous, simple to determine, easy to use and well-behaved when 
small changes are made in the arrangement of the elements of the chain. 
The notation currently in use, introduced by Denavit and Hartenberg, does 
not satisfy all of these criteria. It involves arbitrary choices, so that more 
than one description may apply to a given kinematic chain. More impor-
tantly, the parameters relating the links in the chain can be very sensi-
tive to small changes in the physical arrangement of the chain. This is 
particularly true of so-called ideal chains, ones that permit closed-form 
solution of the inverse kinematic problem, since these often involve ge-
ometries where adjacent axes are parallel, perpendicular or intersect. A 
new notation is proposed here that does not suffer the above-mentioned 
short-comings. To demonstrate some of the advantages of the new nota-
tion, it is applied to the problem of finger-printing a robot arm and to the 
solution of the inverse kinematic problem of near-ideal arms. 
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Introduction 

Let us start right away by defining the new notation: 

Let the home position of a serial kinematic chain be an arbitrary posi-
tion specified in terms of the joint variables. The home position may, for 
example, be chosen to be the one where all joint variables are zero. The 
base coordinate system is an arbitrary external coordinate system fixed 
with respect to the base of the kinematic chain. Erect a coordinate system 
in each link of the chain in such a way that the coordinate axes are paral-
lel to those of the base coordinate system when the chain is in the home 
position. The kinematic chain is then fully specified when the following 
are given for the chain in the home position: 

• The set of unit vectors {o ∗}, parallel to the directions of motion ofˆi 
the prismatic joints. 

• The set of unit vectors {ωω∗}, parallel to the axes of the revolute joints.ˆ i 

• The set of offset vectors {d∗} determined recursively with respect toi 
the chosen base origin as follows: 

The first reference point is the origin of the given base coordinate system. 
Drop a perpendicular from this reference point to the first revolute 
joint axis. This defines the first offset vector as well as a reference 
point on the first revolute joint axis. Now drop a perpendicular from 
this new reference point onto the second revolute joint axis. This 
defines the second offset vector and a new reference point. Continue 
in this fashion to the last revolute joint. Connect the last reference 
point so found to a chosen tip reference point in the final link. This 
defines the last offset vector. 

The reference points so defined are the origins of the link coordinate 
systems. A prismatic joint does not yield a new reference point. The origin 
of the corresponding coordinate system is taken to be that of the last 
reference point encountered working outward from the base coordinate 
system. 

This completes the description of the new notation for describing a 
kinematic chain. Note that there are no arbitrary choices. Thus a given 
kinematic chain has only one description with respect to a given base co-
ordinate system and a tool reference point in the last link. Also, note that 
small changes in the kinematic chain can introduce only small changes in 
the description. If one of the axes is turned through a small angle, for ex-
ample, the corresponding unit vector in the description changes, as does 
the reference point on the axis that is turned, as well as those on axes 
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further from the base. All of these changes are small, however. Similarly,  
if an axis is displaced by a small amount without turning, the correspond-
ing offset, and offsets of axes further from the base, will change, but only 
a little. 

The parameters are not unconstrained, since the direction vectors,  
ô ωω∗ ˆ, and the axes vectors,i 

∗ , have to be unit vectors and since each ofi 
ω̂ω∗ .ithe offsets, d
∗, has to be orthogonal to the following axis vectori 

This means that the parameters are redundant, that is, there are more 
parameters than degrees of freedom. These parameters are, however,  
more convenient than alternate non-redundant sets of parameters, as we 
shall see. 

Throughout this paper, as is customary, it is assumed that joint vari-
ables are controlled accurately or can be measured accurately. Modern 
methods for measuring joint variables appear to be adequate to assure 
that errors introduced by non-linearity will tend to be swamped by other 
contributions to inaccuracy in positioning of the last link. The methods 
presented here do not, however, depend on the assumption that the mea-
sured joint variable of a revolute joint is zero when there is a particular 
alignment of the links or that the measured joint variable of a prismatic 
joint is zero when there is a particular alignment of joints. 

Notations for Kinematic Chains 

There are several things that a kinematic notation has to provide: 

• A standard coordinate system within each link of the chain. 

• The means for determining the transformations between these coor-
dinate system. 

• Methods for using these transformations in the analysis of kinemat-
ics, statics and dynamics. 

Denavit & Hartenberg developed such a notation, which was used by Uicker 
& Kahn in dealing with the dynamics of robot manipulators and popular-
ized further by Pieper and more recently by Richard Paul in his book Robot 
Manipulators. 

Review of Denavit & Hartenberg Notation 

We find the following description of the notation of Denavit and Harten-
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berg in Chapter 2 of Richard Paul’s classic book Robot Manipulators— 
Mathematics, Programming & Control: 

We will now consider the specification of the A matrices. A serial link 
manipulator consists of a sequence of links connected together by 
actuated joints. For an n degree of freedom manipulator, there will 
be n + 1 links and n joints. The base of the manipulator is link 0. 
Link 1 is connected to the base link by joint 1. There is no joint at 
the end of the final link. The only significance of links is that they 
maintain a fixed relationship between the manipulator joints at each 
end of the link. 

Any link can be characterized by two dimensions: the common nor-
mal distance ai, and the angle αi between the axes in a plane perpen-
dicular to the common normal It is customary to call ai the length 
and αi the twist of the link. Generally, two links are connected at 
each joint axis. 

The axis will have two normals to it, one for each link. The relative 
position of two such connected links is given by di, the distance be-
tween the normals along the joint i axis, and θi, the angle between 
the normals measured in a plane normal to the axis. The quantities 
di and θi are called the distance and the angle between the links, 
respectively. 

In order to describe the relationship between links, we will assign 
coordinate frames to each link. We will first consider revolute joints 
in which θi is the joint variable. The origin of the coordinate frame 
of link i is set to be at the intersection of the common normal axes of 
joints i and i + 1 and the axis of joint i + 1. In the case of intersecting 
joint axes, the origin is at the point of the intersection of the joint 
axes. If the axes are parallel the origin is chosen to make the joint 
distance zero for the next link whose coordinate origin is defined. 
The z-axis for link i will be aligned with the axis of joint i + 1. The 
x-axis will be aligned with any common normal which exists and is 
directed along the normal from joint i to joint i + 1. In the case of 
intersecting joints, the direction of the x-axis is parallel or antiparallel 
to the vector cross-product zi−1 ×zi. Notice that this condition is also 
satisfied for the x-axis directed along the normal between joints i and 
i + 1. The angle θi is zero for the i-th revolute joint when xi−1 and xi 
are parallel and have the same direction. 

In the case of a prismatic joint, the distance di is the joint variable. 
The direction of the joint axis is the direction in which the joint moves. 
The direction of the joint axis is defined but, unlike a revolute joint,  
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the position in space is not defined. In the case of a prismatic joint 
the length ai has no meaning and is set to zero. The origin of the 
coordinate frame for a prismatic joint is coincident with the next de-
fined link origin. The z-axis of the prismatic link is aligned with the 
axis of joint i + 1. The x-axis is parallel or antiparallel to the vector 
cross product of the direction of the prismatic joint and zi. For a 
prismatic joint, we will define the zero position when di = 0. 

With the manipulator in its zero position, the positive sense of rota-
tion for revolute joints or displacement for prismatic joints can be 
decided and the sense of direction of the z-axes determined. The ori-
gin of the base link (zero) will be coincident with the origin of link 1. 
If it is desired to define a different reference coordinate system, then 
the relationship between the reference and base coordinate systems 
can be described by a fixed homogeneous transformation. At the end 
of the manipulator, the final displacement d6 or rotation θ6 occurs 
with respect to z5. The origin of the coordinate system for link 6 is 
chosen to be coincident with that of the link 5 coordinate system. If 
a tool (or end effector) is used whose origin and axes do not coincide 
with the coordinate system of link 6, the tool can be related by a fixed 
homogeneous transformation to link 6. 

Having assigned coordinate frames to all links according to the pre-
ceding scheme, we can establish the relationship between successive 
frames n − 1, n by the following rotations and translations: 

rotate about zi−1, an angle, θi; 

translate along zi−1, a distance di; 

translate along rotated xi−1 = xi a length ai; 

rotate about xi, by the twist angle αi. 

This may be expressed as the product of four homogeneous trans-
formations relating the coordinate frame of link n to the coordinate 
frame of link n − 1. This relationship is called an A matrix. 

Once the link coordinate frames have been assigned to the manipu-
lator, the various constant link parameters can be tabulated: di, ai, 
and αi for a link following a revolute joint and θi and αi for a link 
following a prismatic joint. Based on these parameters the constant 
sine and cosine values of the αi’s may be evaluated. The A matrices 
then become a function of the joint variable θi or, in the case of a 
prismatic joint, di. Once these values are known, the values for the 
six Ai transformation matrices can be determined. 
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Problems with Denavit & Hartenberg Notation 

We see that there are several arbitrary choices. A few quotes from chap-
ter 3 of John Craig’s book Introduction to Robotics—Mechanics & Control 
illustrate this further: 

The distance ai is measured along a line that is mutually perpendic-
ular to both axes. This mutual perpendicular always exists and is 
unique, except when the axes are parallel, in which case there is an 
infinite number of mutual perpendiculars of equal length. 
In the case of intersecting axes, the twist αi is measured in the plane 
containing both axes, but the sense is lost. In this special case one is 
free to assign the sign arbitrarily. 
These conventions have been chosen so that in a case where a quantity 
could be assigned arbitrarily, a zero value is assigned so that later 
caclulations will be as simple as possible. 
A final note on uniqueness: The conventions outlined above do not 
result in a unique attachment of frames to links. First of all, when we 
align the zi axis with the axis of joint i, there are two choices for the 
direction of zi. Furthermore, in the case of intersecting joint axes (i.e. 
ai = 0), there are two choices for the direction of xi, corresponding 
to the choice of direction for the normal of the plane containing zi 
and zi+1. Also, when prismatic joints are present there is quite a bit 
of freedom in frame assignment. 
Note that there are a number of arbitrary choices that have to be made 

when special alignments occur. As we note later such special alignments 
are not uncommon in practice, since they are needed to assure that the 
inverse kinematic problem has a closed-form solution1. 

Other suggestions have been made for standard coordinate systems 
in the links of kinematic chains. In work on dynamics, for example, the 
center of mass is a natural choice for the origin and the principal axes 
are natural choices for the directions of the coordinate axes of a link. So 
far, these alternate coordinate systems have been accomodated by intro-
ducing transformations to and from the coordinate systems established 
in the links using the Denavit & Hartenberg notation. 

Kinematic Solution of Ideal Kinematic Chains 

The forward kinematic problem is that of determining the position and 

1It is interesting to note, by the way, that the link coordinate systems shown 
for the Stanford arm on the cover of Paul’s book do not conform strictly to the 
notation of Denavit & Hartenberg. 
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orientation of the final link of the kinematic chain given the joint variables. 
This problem has a unique solution that can be computed directly. The 
inverse kinematic problem is that of finding a set of joint variables that 
will place the final link in a given position and orientation. There are 
typically several solutions for positions and orientations within the work-
space, but these cannot be easily found for an arbitrary kinematic chain. 
An ideal kinematic chain is one for which a closed-form inverse kinematic 
solution exists. Almost all industrial robot arms are designed so that the 
inverse kinematic problem can be solved directly. Only a robot designed 
to operate solely in teach-by-showing or play-back mode can be useful 
without an efficient method for solving the inverse kinematics problem. 

The solution methods for ideal kinematic chains depend on the in-
tersection of certain joint axes, as well as parallel or perpendicular align-
ments of axes. Many arms with six joints, for example, are designed so 
that the inverse kinematic problem can be broken down into two sub-
problems, each with only three unknowns, by arranging for the axes of 
the last three joints to intersect in a point. 

In practice, a kinematic chain departs slightly in the geometry from 
that specified in its design. This means that a closed-form kinematic solu-
tion does not exists for the actual arm. Thus methods must be developed 
for efficiently finding solutions of the inverse kinematic problem for these 
near-ideal kinematic chains. 

Forward Kinematics 

Let us use the notation 
R = Rot( ̂ωω, θ) 

for the clockwise rotation by an angle θ about the axis through the origin 
with direction specified by the unit vector ω̂ω. It is not important whether 
this is represented using an orthonormal matrix, axis-and-angle or a unit 
quaternion (see Appendix). Let 

x = R(x) 
be the vector obtained by rotating x, and let 

R1 ◦ R2 

be the composition of the two rotations R1 and R2. 

Working Backwards 

Suppose that the kinematic chain has np prismatic joints and nr revolute 
joints. Let n = np + nr be the total number of degrees of freedom. The 
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joints are numbered from 1 to n, while the links are numbered from 0 to 
n, with the fixed base being link number 0 and link n being the final link. 

We wish to compute the position of the tip reference point in the base 
coordinate system for a given set of joint variables. One way to arrive at 
a procedure for doing this is to imagine the kinematic chain in the home 
position and then moving one joint at a time, starting with the one furthest 
from the base. 

In the case of a prismatic joint one uses the recursive relationship 
i ∗ ox = i+1x + piˆi , 

where pi is the extend of the linear motion of the joint. In the case of a 
revolute joint one uses instead the recursive relationship 

i ∗ x = iRi+1(ix) + di , 
∗ where iRi+1 = Rot( ̂ωωi , θi), and θi is the angular motion of the joint. One 

starts with the initial offset nx = d∗ and the desired result is, 0x, then 

position of the tip reference point in terms of the base coordinates. A 
subscript is used to denote a quantity in a particular link, while a super-
prescript denotes a coordinate system in which a quantity is measured. 

The forward kinematic computation is very simple, requiring 2nr 

trigonometric function evaluations and only about 3np + 18nr multipli-
cations and 3np + 14nr additions, if Rodrigues’s formula is used to deal 
with the rotation of vectors (see Appendix). 

To compute the orientation of the final link as well, we have to com-
pose the rotations using 

i+1Sn 
iSn = iRi+1 ◦

with nSn = I, a rotation of zero angle about an arbitrary axis. The com-
posite rotation from the final link to the base coordinate system is then 
0Sn. Composing the rotation about doubles the amount of work, but al-
lows us to easily calculate the position in base coordinates of an arbitrary 
point in the final link using: 

(0x′ − 0x) = 0Sn(nd′ − nd) 

Working Forwards 

If the rotations are composed, it is also possible to work in the direction 
from the base to the final link. In the case of a prismatic joint one uses 
the recursive relationship 

y + 0Si(piˆiy = i−1 oi∗). 
In the case of a revolute joint one uses instead 

i−1Ri 0Si = 0Si−1 ◦
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and 
i i−1y = y + 0Si(d∗ 

i ). 
Here 0S0 = I and y0 = 0. 

Finger-printing 

In order to be able to position the last link of a kinematic chain in any 
desired position and orientation within its work-space, it is neccessary 
to solve the inverse kinematics problem. This can only be done if the 
parameters of the kinematic chain are known. High accuracy cannot be 
achieved if these parameters are taken from the design plans without al-
lowance for manufacturing tolerances. To accurately determine the joint 
variables that will place the last link in the desired position and orien-
tation, it is neccessary to know the parameters of the actual kinematic 
chain. It has not proven practical to obtain these paramaters with suffi-
cient precision by direct measurement on the disassembled chain. 

Arm Calibration 

Calibration procedures have been proposed where the position of a spec-
ified calibration point in the last link is accurately measured for a large 
number of joint variable combinations. The parameters of the arm are 
taken to be the ones that would place the calibration point in the mea-
sured positions given the corresponding joint variables. 

One has to make the following decisions when one designs such a 
calibration procedure: 

• What to measure. 

• How many test positions to use. 

• How to determine the parameters from the measured positions. 

One might expect that one would have to measure the position and orien-
tation of the last link for each set of joint variables. It is difficult to make 
accurate measurements of the attitude of a small rigid body in space, so 
it is fortunate that calibration procedures can be devised that rely only 
on positional information. In essence, each component of the measure-
ment provides a constraint on the parameters, and one just has to make 
sure that there are at least as many constraints as there are parameters 
to be found. If the orientation of the final link is not measured, twice 
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as many test positions have to be used as would be needed were these 
measurements available. 

It should also be apparent that it may be possible to gather the requi-
site information by measuring only one or two of the three components 
of the position. This simplifies the mechanics of the calibration proce-
dure, but also makes the solution more sensitive to errors. In a similar 
vein, the measurements need not actually be the components of the po-
sition in the base coordinate system. They can be linear combinations 
of these components or even distances from fixed points whose coordi-
nates are accurately known. All that matters is that a sufficiently large 
number of independent constraints is gathered. This flexibility is impor-
tant, since apparatus for accurately measuring the position of a point in 
three-dimensional space is expensive and difficult to calibrate and use. 

By position of the final link is usually meant the position of some 
reference point in the final link. It is important that this reference point 
be chosen carefully, since it must move when any one of the joint variables 
changes. It should not, for example, lie on the last joint axis of an arm 
whose last axis is revolute. Some thought should be given to the choice 
of this point, since the sensitivity of its position to a variation in one of 
the joint variables will determine the accuray with which the parameters 
of that joint can be found. There are, however, other factors to consider 
also. The reference point should be near the points in the final link that 
are likely to be of significance in the application, such as the center point 
of a tool to be attached to the final link. 

The minimum number of test positions that have to be used in the cal-
ibration can be determined simply by considering the number of unknown 
parameters and the number of measurements taken in each test. We show 
later that the description of a kinematic chain with six revolute joints in-
volves 27 parameters. So, if the only the position of a point in the final link 
is measured, then at least 9 test positions must be used to provide enough 
constraint to determine the parameters of the kinematic chain (since each 
measurement supplies three constraints). Measurement errors will lead 
to errors in the parameters. If the test positions are poorely chosen and 
do not sample the work-space adequately, the errors in the parameters 
can be quite large in relation to the measurement errors. This means that 
kinematic solutions for position and orientations that are not near those 
sampled will tend to be inaccurate. 

These errors can be reduced by using more than the minimum num-
ber of test positions. In this case there will be more constraints than 
parameters and the resulting equations will almost certainly be inconsis-
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tent. A least-squares procedure is then called for. 

Problems with Denavit & Hartenberg Notation 

Such a least-squares procedure may be developed using the Denavit & 
Hartenberg notation for kinematic chains. It turns out that such a proce-
dure does not work well, in part because of the fact that the parameters 
are not well behaved. That is, small changes in the arrangement of the 
links in the kinematic chain can lead to large changes in some of the 
parameters. Consider, for example, two neighboring joint axes that are 
almost parallel. In determining the kinematic parameters, one has to find 
the shortest line connecting the two axes. The place where the two axes 
approach the closest, however, moves rapidly when the angle between the 
axes is changed. It can easily run off to infinity in one direction, only to 
make its appearance again at infinity in the opposite direction. 

This kind of problem tends not to arise when a random arrangement 
of links and joints is assembled. It is certain to occur, however, with near-
ideal chains, since these represent small departures from arms where axes 
are exactly parallel, exactly at right angles or intersect. Unfortunately, it is 
these near-ideal chains that we are most interested in. This means that we 
should base the least-squares method on other sets of parameters than 
those occuring in the Denavit & Hartenberg formulation. 

Another problem is that the Denavit & Hartenberg notation uses four 
parameters per joint. This is just right for revolute joints as we shall see, 
but it is too much for a prismatic joint. The notation in this case is re-
dundant. Additional constraints must be introduced to force uniqueness. 
This can be done, but complicates the least-squares procedure. 

Number of Degrees of Freedom 

A kinematic chain with np prismatic joints and nr revolute joints is de-
scribed by np unit vectors parallel to the motions of the prismatic joints 
and nr unit vectors parallel to the joint axes of the revolute joints, as well 
as (nr + 1) offset vectors. It thus may seem that it takes (3np + 6nr + 3) 
parameters to fully specify such a kinematic chain. Note, however, that 
the vectors constituting the description have to satisfy the constraints 

ˆ∗ · ˆ∗ ∗ ∗ ∗ ˆ ˆ ˆoi oi = 1, ωωi · ωωi = 1 and di 
∗ · ωωi = 0, 

for i = 1, 2, . . . n  where n is the number of links in the chain. There are 
np + 2nr constraints, so the number of degrees of freedom is actually 
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only 

(3np + 6nr + 3) − (np + 2nr) = 2np + 4nr + 3. 

Alternatively, note that a unit vector defines a direction, and this can 
be specified by a point on a unit sphere. Thus a unit vector has but two 
degrees of freedom. Furthermore, the offsets have to be perpendicular to 
the following joint axis and thus also have only two degrees of freedom. 
The last offset is not so constrained and thus has a full three degrees of 
freedom. The total number of degrees of freedom is thus again seen to 
be 

2np + 2nr + 2nr + 3 = 2np + 4nr + 3. 

A general-purpose kinematic chain in three dimensions must have six 
joints (at least three of which have to be revolute). A chain with three pris-
matic joints and three revolute joint is thus described by 21 paramaters, 
while an all-revolute arm has 27 parameters. The number of paramaters 
is reduced if additional assumptions are made, such as that the first axis 
passes through the origin or that the tool reference point lies on the last 
axis. Such additional constraints are of little interest in practice, however,  
since manufacturing variations will ensure that the first and last offsets 
cannot be assumed to be equal to zero without introducing some error in 
the kinematic solution. 

Least-Squares Approach 

Let the forward kinematics be represented by the vector-valued function 

x = f(t; p), 

where t is the vector of joint variables, p is the vector of kinematic pa-
rameters and x is the vector of measured components of the position and 
orientation of the last link in the chain2. The task is to determine the 
parameter vector p, given m corresponding pairs of joint variable vectors 
ti and measurement vectors xi. In the absence of measurement error and 
other disturbing effects, such as bending of the links, we would expect to 
be able to find a parameter vector p such that 

xi = f(ti; p), 

for i = 1, 2, . . .m. In practice, we instead minimize the sum of squares of 
the residuals 

ei = xi − f(ti; p). 

2In what follows the vector x need only contain the components of the position 
and orientation of the final link actually measured in the calibration process. 
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That is, we minimize 
m 

TE = ei ei 
i=1 

by suitable choice of p. This is an unconstrained minimization problem, 
subject to the usual numerical methods, as long as we choose a set of 
parameters that is not redundant. As mentioned earlier, however, there 
are definite advantages to the use of redundant parameters. Using the 
parameters introduced in this paper, for example, the minimization is 
constrained by the conditions 

ô ∗ 
i · ô ∗ 

i = 1, ω̂ω∗ 
i · ω̂ω∗ 

i = 1 and d∗ 
i · ω̂ω∗ 

i = 0. 

Gradient Methods 

Many methods for non-linear optimization use the gradient of the func-
tion to be extremized. In the absence of constraints on the parameters we 
could simple set the derivative of the sum of squares of the errors equal 
to zero, that is,  

∂E = 0,
∂p 

where the derivative of E with respect to the vector p is simply the vector 
whose components are the derivatives of E with respect to the compo-
nents of p. From this we obtain 

m 

JT 
p ei = 0, 

i=1 

where 
∂fT 

JT = p ∂p 
, 

is a matrix whose rows are the derivatives of the row-vector fT with respect 
to the components of p. This leads to 

m m ∑ 
JT 

∑ 
p xi = JT f(ti; p).p 

i=1 i=1 

It is hard to proceed further without additional information about the 
structure of the forward kinematic function, f, since this equation is likely 
to be highly non-linear. If we suppose, however, that we have a good 
approximation of the parameter vector, then we can use Taylor series 
expansion to linearize the equation locally3. Ignoring higher order terms, 
we have 

f(t; p + δp) = f(t; p) + Jp δp. 

3The equations are already linear in the offset vectors di∗. 
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Suppose that p is our current estimate, while p+δp is the correct solution. 
Then 

m m 

JT 
p xi =
 JT f(t; p) + Jp δpp , 

i=1 i=1 

which yields   
m m  JT 

∑ 
p ei.p Jp 

 δp = −  JT 

i=1 i=1 

These are the familiar normal equations for a linearized least-squares 
problem. The solution of the original problem may be found iteratively 
by means of this equation, with the Jacobian recomputed using the latest 
estimates of the optimal values of the unkown parameters. 

Parameter Space and Constraints 

Unfortunately, we are not dealing with an unconstrained minimization 
problem, so the iterative method suggested in the previous section is not 

∗ ,i ω̂ω
∗ 
i anddirectly applicable. We could introduce the constraints on ô 

∗ 
id using Lagrange multipliers, or at least add penalty terms that increase


rapidly as one departs from the conditions 
∗ 
i = 1,
 ω̂ω∗ 

i ·
ω̂ω∗ 
i = 1 and d
∗ 

i ·
ω̂ω∗ 
i = 0.
∗ 

i · ôô 

A more viable alternative is to always remain in the allowable subspace 
of parameters by only exploring changes in the parameters that are guar-
anteed not to violate the constraints. This is easy to do in the case of 
prismatic joints, one merely has to pick two directions orthogonal4 to the 

∗ . Things are a little harder in the case of revolute joints. Fo-iunit vector ô 
cusing attention on one joint at a time, we see that we need four different

ways of modifying the six numbers in the vectors ω̂ω∗ 

i and d
∗ 
i in such a 

fashion that the constraints remain satisfied. 

Feasible Variations of Parameters 

The parameters can be changed as follows without violating the con-
straints: 

4Things become even simpler if one wishes to allow for uncertainty in scaling, 
as well as the zero offset of the prismatic joint variable, since then the vector 
∗ 
i in the direction of joint extension need not be unit vector and so o
∗ 

i can beo 

varied arbitrarily. 
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•	 The offset di can be rotated about the axes ω̂ωi. It is clear that it will 
remain orthogonal to the next axis. Here 

d′ = cos α1 di + sin α1 ( ˆi	 ωωi × di). 
•	 The axis ω̂ωi can be rotated about the offset di. The orthogonality is 

preserved, as is the length of the axis vector. Here 

ωω′ ˆ di × ˆˆ i = cos α2 ωωi + sin α2 (ˆ ωωi). 

•	 The offset di and the axis ω̂ωi can be rotated together about a vector 
orthogonal to both. The lengths of the two vectors, as well as the 
angle between them is preserved by this operation. Here 

ˆ ωωi)di 
′ = ‖di‖ (cos α3 di + sin α3 ˆ


while

ωω′ ωωi − sin α3 di).
ˆ i = (cos α3 ˆ ˆ

•	 The offset di can be extended along its length. Since the new offset 
points in the same direction as the old one, it will still be orthogonal 
to the axis of the next joint. Here 

di 
′ = eα4 di. 

Note that we did not have to assume that the variations in ω̂ωi and di are 
infinitesimal; the constraints remain satisfied for finite α1, α2, α3, and α4. 

There is a problem with the scheme as presented so far in the unusual 
situation when di has zero length. This can be handled by generating an 
arbitary direction, s say, orthogonal to ωωi. This direction can then beˆ
used instead of di to generate the three variations of ω̂ωi above. Finnally, 
di can be extended in a direction orthogonal to both ω̂ωi and s without 
violating the constraints, in order to generate the fourth needed variation 
of the parameters. 

Infinitesimal Analysis of Parameter Changes 

While the scheme above ensures that new parameter values generated 
satisfy the required constraints for any α1, α2, α3, and α4, in practice the 
changes chosen will be small in order to satisfy the assumption underlying 
the linearization of the least-squares problem. It is instructive to note how 
di and ω̂ωi change when α1, α2, α3, and α4, are infinitesimal. We have for 
the four changes in the parameters introduced above: 

ωωi × di) and δ ˆδdi = δα1 ( ˆ	 ωωi = 0. 

δdi = 0 and δ ˆ di × ˆωωi = δα2 (ˆ ωωi). 
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ωωi and δ ˆ ˆδdi = δα3 ‖di‖ ˆ ωωi = −δα3 di. 

δdi = δα4 di and δ ω̂ωi = 0. 
Note that the three incremental changes in d∗ are orthogonal to one an-i 
other. Also, the two incremental changes in ωω∗ are orthogonal to oneˆ i ∗ another, as well as to ω̂ωi . The four variations indroduced above thus cor-
respond to orthogonal directions in the space of feasible solutions. They 
yield a useful non-redundant local coordinate system. 

Constrained Optimization 

We can use the unconstrained least-squares method discussed above di-
rectly if we consider variations in the paramater vector not to be inde-

∗ ∗ o i ˆpendent variations of ˆi , d
∗ and ωωi , but instead variations in the or-

thogonal directions in parameter space just described. While there are 
(3np + 6nr + 3) parameters, there are only (2np + 4nr + 3) directions 
to consider. The derivatives occuring in JT are now not to be taken withp 

respect to the original parameters of the kinematic chain, but with respect 
to the new parameters α1, α2, α3 and α4. In practice these derivatives can 
be estimated numerically by recomputing the forward kinematic solution 
for small changes in the corresponding directions in parameter space5. 

Obtaining a Good Initial Guess 

The iterative method presented above requires an initial guess to get 
started. Typically a kinematic chain will be constructed according to some 
design. The parameters extracted from the design plan provide good ini-
tial guesses for the parameters of the actual arm. 

Another alternative is to use a method that finds one axis at a time, 
starting in the home position. If the joint extension of a prismatic joint is 
varied, a point on the chain further from the base than this joint will trace 
out a straight line in space. This line will be parallel to the direction of 
extension of the joint. A line can be fitted to the positions of the point on 
the kinematic chain and its direction used as an estimate of the prismatic 

∗joint direction ˆi .o 

5As usual, when estimating derivatives numerically, the increment has to be 
chosen carefully to reach a satisfactory compromise between round-off errors 
in the computer arithmetic when the step-size is too small and truncation errors 
when the step-size is too large. 
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Similarly, if the joint angle of a single revolute joint is varied, an point 
on the chain further from the base than this joint will trace a circle in 
space. This circle will lie in a plane perpendicular to the joint axis and 
the joint axis will pass through the center of the circle. Fitting a circle 
to the positions of the point on the kinematic chain as one joint angle is 
varied thus allows one to identify a point on the joint axis, as well as the 

∗ direction of the axis, ω̂ωi . 
Collecting information in this way about each joint in turn allows one 

to estimate the parameters of the kinematic chain. While the estimates 
are likely not to be good enough for use in the inverse kinematic solution 
program, they will be adequate as starting values for the iterative method 
described above for finding the least-squares solution for the parameters. 

Kinematics of Non-Ideal Serial Chains 

There are several ways of iteratively computing the solution of a non-ideal 
kinematic chain. These differ in complexity and computational efficiency. 

Method of False Position 

Suppose that p is the parameter vector of the ideal kinematic chain, while 
p′ is that of the actual (non-ideal) chain. A closed form solution is available 
for the inverse kinematic of the ideal chain. It is also straight-forward 
to compute the forward kinematics for the non-ideal chain. An iterative 
scheme can be based on these two procedures. Suppose that we wish to 
place the terminal device in a position and orientation specified by the 
vector x. The iteration is based on a modified or “false” goal position xi 
for the ideal chain. Let the solution of the inverse kinematics of the ideal 
chain for this goal position xi be ti, that is,  

xi = f(ti; p). 
The position and orientation of the actual chain given this joint angle 
vector is 

xi = f(ti; p′). 
This differs from the desired position by δxi = (xi 

′−x). The notion behind 
this method is that we can get the actual arm closer to the correct position 
by pretending that we want the ideal chain to go to the modified goal 
position 

xi+1 = xi − δxi 
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instead of x. The iteration proceeds by solving the inverse kinematics of 
the ideal arm for this new goal position. 

If the problem was linear, the exact solution would be found in one 
step. Since it is not linear, one only comes closer to the exact solution. 
The iteration can be started by letting x1 = x. The iteration converges 
rapidly, provided that the parameters of the actual arm are close to those 
of the ideal arm. Even a single iteration provides accuracy in position-
ing significantly better than that to be expected if the inverse kinematic 
solution of the ideal arm is used directly. 

Some trigonometric function evaluation can be avoided if one notes 
that the forward kinematics depends only on the cosine and sines of the 
joint angles. That is, one need not calculate the joint angles themselves 
(until the final step of the iteration). In the solution of the inverse kine-
matics of the ideal chain it is sufficient to determine the cosines and sines 
of the joint angles. 

Definition of the Workspace 

The work-space of a kinematic chain is the part of the space of positions 
and orientations that can be attained by the final link6. Note that this 
space has a higher dimension than the space in which the kinematic chain 
is embedded and that it may have a non-trivial topology7. 

For a kinematic chain in a plane, for example, the work-space is three-
dimensional. Two of the dimensions correspond to the position of the ref-
erence point in the final link, while the third one corresponds to the direc-
tion in which the final link points. This third dimension “wraps around,” 
since adding 2π to the orientation of the final link yields the same posi-
tion and orientation. If there are three revolute joints, the work-space is 
cylindrical, with opposite faces of the cylinder identified. 

For a kinematic chain in three-dimensional space, the work-space, as 
defined here, has six dimensions, three for position and three for orien-
tation. The three dimensions for orientation also “wrap around” and can 
best be thought of in terms of the surface of a unit sphere in four dimen-
sions. 

Various projections and slices of the work-space that are easier to 
visualize are commonly used. For example, manufacturers often specify a 

6In the discussion here we ignore mechanical limits on joint angles and joint 
extensions. 

7The joint-variable space too has an interesting topology, since it “wraps around” 
in the direction of each of the joint variables corresponding to a revolute joint. 
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weak projected work-space, that is, the set of points reachable using some 
orientation of the final link. A more useful projection is a strong projected 
work-space, defined to be that set of points that can be reached using any 
orientation of the final link. The latter is obviously much smaller than the 
former (and in some cases is actually empty!). 

Near the Boundary of the Workspace 

The mapping from the space of joint variables to the work-space is many-
to-one. That is, several different sets of joint variables will yield the same 
position and orientation of the final link. Different sets of joint variables 
yielding the same position and orientation are said to correspond to dif-
ferent arm configurations. One can think of this in terms of Riemann 
sheets, with the folds in the sheets on the boundary of the work-space. 
The superimposed sheets at any given point in the work-space correspond 
to different arm-configurations. The boundary of the work-space is where 
the number of solutions is reduced. The configuation of an arm can only 
be changed on the boundary of the work-space. Singularities occur on the 
boundaries of the work-space. These are places where finite velocities in 
the work-space require infinite velocities in some of the joint variables. 
This suggests that the iterative methods described above are likely to re-
quire a large number of iterations in parts of the work-space that are close 
to the boundary. 

In addition, the inverse kinematic solution method presented above 
will not work at all in two cases: 

•	 When the desired position and orientation is outside the work-space 
of the actual arm (but inside that of the ideal arm). 

•	 When the desired position and orientation is outside the work-space 
of the ideal arm (but inside that of the actual arm). 

In the first case, an inverse kinematic solution exist for the ideal chain, but 
none for the actual one, so the iteration cannot converge. In the second 
case, no inverse kinematic solution is found for the ideal arm, and so no 
starting values are available for the iteration. Because of these problems, 
and the need to stay away from singularities, it is suggested that positions 
and orientations near the boundary of the work-space not be used. 
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Summary and Conclusions 

The new notation for describing serial kinematic chains with revolute 
joints has been shown to be unique, unambiguous, simple to determine,  
easy to use and well-behaved when small changes are made in the ar-
rangement of the elements of the chain. It has also been shown that the 
notation has advantages when used in least-squares calibration proce-
dures designed to recover the parameters describing the kinematic chain. 
Methods for computing the forward kinematics have been presented and 
an iterative method given for solving the inverse kinematics of near-ideal 
kinematic chains. 
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Appendix 

Notation for Rotation 

The transformations between the coordinate systems of the links in the 
chain are composed of translations and rotations. Few would argue that 
vectors are the appropriate way of representing the translational offsets. 
Things are not so clear when it comes to methods for representing ro-
tation. The most commonly used notation for rotation in robotics and 
computer graphics is the orthonormal matrix with positive determinant. 
A vector is rotated simply by multiplying the matrix by the vector, and 
rotations are composed by multiplying the corresponding matrices. In 
dealing with the kinematics of serial chains, other notations also have 
their attractions. 

Since the axes of the revolute joints and their angles of rotation are 
known, it is natural to consider the axis-and-angle notation, for example. 
Suppose the rotation is by an angle θ about an axis through the origin 
with direction specified by the unit vector ω̂ω. Then Rodrigues’s formula 
tells us that the vector x is rotated into 

x′ = x cos θ + ( ˆ ω ωω× x) sin θ.ωω · x) ω̂ (1 − cos θ) + ( ˆ
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A slight savings in the computation effort is achieved if we use the equiv-
alent form 

x′ = x + ( ˆ ωω× ( ˆωω× x) sin θ + ˆ ωω× x) (1 − cos θ), 
since the cross-product of ωω and x is re-used. Unfortunately, there isˆ
no simple formula for composition of rotations using the axis-and-angle 
notation, so it is not directly useful in dealing with kinematic chains. 

A related notation does, however, does yield a simple formula for 
composition. A quaternion q̊ can be thought of as composed of a scalar 
part q0 and a vector part q. Multiplication of the quaternions ˚ q top and ˚
produce the quaternion ̊r can be defined in terms of the scalar and vector 
parts of the quaternions. If 

(r , r) = (p, p) (q,  q) 
then 

r = pq − p · q and r = p q + q p + p × q. 
A quaternion can also be considered as composed of a real part and 
three different kinds of imaginary parts. These four numbers together 
are known as Euler’s parameters. 

A rotation through an angle θ about an axis given by the unit vector 
ˆ q of unit magnitude, whose scalarωω can be represented by a quaternion ˚
part q is cos(θ/2) and whose vector part q equals sin(θ/2) ω̂ω. That is, 

θ θ
˚ ˆq = cos 

2 
, sin ωω . 

2 
A vector is rotated according to the rule 

˚′ q ˚ qx = ˚ x ˚∗ , 
where ˚∗ is the conjugate of ˚q q, obtained by negating the vector part. Here 
˚ xx and ˚′ are purely imaginary quaternions whose vector parts are equal 
to x and x′ respectively. It follows from the above that composition of 
rotation corresponds to multiplication of unit quaternions. The formula 
for rotation of a vector can also be written explicitly in terms of the scalar 
and vector parts of the unit quaternion q̊ as follows: 

x = (q2 − q · q) x + 2 (x · q) q + 2 q(q × x). 
It is important to realize that the choice of a notation for rotation is in-
dependent of the choice of a notation for the kinematic chain. The unit 
quaternion notation for rotation does, however, have a number of advan-
tages that one may wish to exploit. 

Computational Effort 

The orthonormal matrix provides the most efficient representation when 
it comes to rotating a vector. It takes just 9 multiplications and 6 addi-
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tions (3 dot-products). It is relatively expensive to rotate a vector using 
unit quaternions. The obvious algorithm, based on the formula given 
above, requires 22 multiplications and 14 additions8. In the computa-
tion of the direct kinematics, however, one not only has to rotate vectors,  
but also compose rotations. The orthonormal matrix is at a disadvantage 
here, since it takes 27 multiplications and 18 additions (9 dot-products),  
while multiplication of quaternions requires only 16 multiplications and 
12 additions. 

The forward kinematic computation involves one rotation of an off-
set vector and one composition of rotations per revolute axis. It thus 
takes 38 multiplications and 26 additions per revolute joint using unit 
quaternions, while orthonormal matrices require 36 multiplications and 
24 additions. It thus appears that there is not much difference between 
the two notations if we consider only computational effort. 

In the above analysis we have assumed the obvious implementations 
of the formulae for rotation of a vector and for composition of rotations. 
The computational effort can be reduced a little by more careful attention 
to the details. In the case of the multiplication of orthonormal matrices, 
for example, we can make use of the fact that the third column of the 
result must be orthogonal to the first two and that it must have unit mag-
nitude. It can be computed from the first two columns by means of a 
cross-product. This reduces the effort to 24 multiplications and 15 addi-
tions/subtractions. 

Similarly, the rotation of a vector using unit quaternions can be re-
duced to just 15 multiplications and 12 additions9, using the formula 

x = x + 2 q(q × x) + 2 q × (q × x), 

where the cross-product of q and x is reused. So it takes 31 multiplica-
tions and 24 additions per revolute joint using unit quaternions, while 
orthonormal matrices require 33 multiplications and 21 additions. 

Once again we see that there is not a significant advantage to either 
of the two notations for rotations in terms of computational effort. Other 
considerations must motivate the choice of one over the other alterna-
tives. It is also important to point out, once again, that the choice of a 
notation for rotation is independent of the choice of a notation for the 
kinematic chain. 

8Here we count a multiplication by two as an addition.

9Again counting a multiplication by two as an addition.



