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A quaternion can be conveniently thought of as either 

(i) a vector with four components; or 

(ii) a scalar plus a vector with three components; or 

(iii) a complex number with three different “imaginary” parts. 

Here are three quaternions written in the “hyper complex” number form: 

p̊ = p0 + ip1 + jp2 + kp3 

q̊ = q0 + iq1 + jq2 + kq3 

r̊ = r0 + ir1 + jr2 + kr3 

The rules for multiplication are 

i2 = j2 = k2 = −1 

(reminiscent of the square of the imaginary unit of complex numbers) and 

ij = −ji = k 

jk = −kj = i 
ki = −ik = j 

(reminiscent of pairwise cross products of unit vectors in the directions 
of orthogonal coordinate system axes). Then, if ˚ = p˚r ˚q, we obtain from 
the rules above ⎡ ⎤ ⎡ ⎤⎡ ⎤ 

r0 p0 −p1 −p2 −p3 q0 ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ r1 ⎥ ⎢ p1 p0 −p3 p2 ⎥⎢ q1 ⎥ ⎢ ⎥ = ⎢ ⎥⎢ ⎥ ⎣ r2 ⎦ ⎣ p2 p3 p0 −p1 ⎦⎣ q2 ⎦ 

r3 p3 −p2 p1 p0 q3 

or 
˚ qr = P˚

which can also be written in another way 
⎡ ⎤ ⎡ ⎤⎡ ⎤ 
r0 q0 −q1 −q2 −q3 p0 ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ r1 ⎥ ⎢ q1 q0 q3 −q2 ⎥⎢ p1 ⎥ ⎢ ⎥ = ⎢ ⎥⎢ ⎥ ⎣ r2 ⎦ ⎣ q2 −q3 q0 q1 ⎦⎣ p2 ⎦ 

r3 q3 q2 −q1 q0 p3 

or 
∗ r =Q p˚ ˚

These equations spell out in detail how to multiply two quaternions. Im-
portantly, multiplication is not commutative. 
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Note that the matrices appearing above are orthogonal, in fact PPT = 
p · p) I  where I is the 4 × 4 identity matrix. The above gives two use-(˚ ˚

ful isomorphisms between quaternions (˚ q) with orthogonal 4 × 4p and ˚
matrices (P and Q∗ ) — one for “pre-multiplication” and one for “post-
multiplication.” 

“Scalar plus Vector” notation 

Using the more compact “scalar plus vector” notation, we can write, 

˚ q = (q, q), and ˚p = (p, p), ˚ r = (r , r) 

so that the product (r , r) = (p, p)(q, q) becomes 

(r , r) = (pq − p · q, pq + qp + p × q) 

We now define the conjugate of a quaternion 

q̊∗ = (q, −q) 

where q̊ = (q, q), and the dot-product of two quaternions


˚ ˚
p · q = pq + p · q 

It is useful to derive a few identities based on these basic operations: 

˚∗p˚ ˚∗p(˚q)∗ = q 

(˚q) · (˚r) = (˚ ˚ q ·˚p˚ p˚ p · p)(˚ r) 
(˚q) · (˚q) = (˚ ˚ q · q)p˚ p˚ p · p)(˚ ˚

p˚ r = p ·˚q˚q ·˚ ˚ r˚∗ 

Importantly if ˚ qq = (q, q) and ˚∗ = (q, −q), then 

q · q q · q)˚˚ ˚∗ = (˚ ˚ e 

e = (1, 0). Hence ˚∗/(˚ ˚ q, that is where ˚ q q · q) is the inverse of ˚

˚∗/(˚ ˚ ˚ eq q · q) q = ˚

and 

q ˚∗/(˚ ˚ e.˚ q q · q) = ˚

This is a manifestation of the interesting algebra of quaternions — some-
thing not possible with vectors of three components (i.e. there is no sen-
sible definition for multiplication for vectors that yields interesting prop-
erties such as an inverse). 

Representing vectors and rotations 

We use quaternions with zero “real” part to represent vectors. So the 
vector r is represented by r̊ = (0, r). Consider the transformation of r to 
r′ performed by 

r ˚r˚∗′̊ = q˚q 
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r is a “purely imaginary” quaternion (i.e. ˚ q is a unit where ˚ r = (0, r)) and ˚
q · q = 1).quaternion (i.e. ˚ ˚

Applying the above rule for multiplication of quaternions twice we 
find first that the “real” part of the result is zero, so that we can write 
′̊ = (0, r ), and second r

r′ = (q2 − q · q)r + 2q(q × r) + 2(q · r)q. 
a result that can also be written in an alternate form that involves fewer 
arithmetic operations: 

r′ = r + 2q(q × r) + 2q × (q × r). 
r′ = ˚r˚ turns a “purely imaginary” quaternion into an-The operation ˚ q˚q ∗ 

other purely imaginary quaternion. The inverse of this operation is simply 
r q r′˚˚ = ˚∗˚ q. It is easy to show that the operation preserves dot-products. 
That is, 

· r2 = r1 · r2r1 

r1 ˚r1˚ r2 = ˚r2˚∗ . A special case of this is r′ · r′ = r · r.where ′̊ = q˚ q ∗ and ˚ q˚ q 
This means the operation preserves lengths and angles. It must therefore 
be a rotation — or a rotation plus a reflection. Finally, we can show that 
the operation preserves triple products 

[r1 r2 
′ r3] = [r1 r2 r3] 

and hence must represent a rotation, since a rotation plus reflection would 
flip the sign of the triple product. 

It remains for us to figure out what rotation the unit quaternion q̊ 
q · q) q orrepresents. Substituting q for r in the above formula yields (˚ ˚

r′ = q. Hence q is parallel to the axis of rotation ω. 

We still need to determine the angle of rotation θ. A vector r perpen-
dicular to the axis of rotation is turned into a vector r′ making an angle 
θ with r. If we pick r = q × a where a is an arbitrary vector that is not 
parallel to q, then we find after some simplification that 

2 r · r′ = (q2 − q · q) ‖r‖
Now since 

r · r′ = ‖r‖∥r′∥ cos θ 

and ‖r′‖ = ‖r‖ we find that 

q2 − q · q = cos θ 

adding q2 + q · q = 1 to this equation we obtain 2q2 = 1 + cos θ or 

q = ± cos(θ/2). 
If we subtract, we obtain instead 2q · q = 1 − cos θ or ‖q‖ = sin(θ/2). So  
finally 

q = ± sin(θ/2)ω 
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Hence the unit quaternion representing rotation through an angle θ about 
the axis ω is q̊ = (q, q), with q and q are as defined above. Note, however, 
that −q̊ represents the same rotation, since


(−˚ r(−˚∗) = ˚r˚ .
q)̊ q q˚q ∗ 

Finally, from 
∗ p(˚r˚∗)˚ p˚ r(˚∗p ) = (˚q)̊ p˚˚ q˚q p = (˚q)̊ q ˚∗ p˚ r(˚q)∗ 

we see that composition of rotations corresponds to multiplication of 
quaternions. 

Advantages of unit quaternion notation 

There are at least eight methods used fairly commonly to represent ro-
tation, including: (i) orthonormal matrices, (ii) axis and angle, (iii) Euler 
angles, (iv) Gibbs vector, (v) Pauli spin matrices, (vi) Cayley-Klein parame-
ters, (vii) Euler or Rodrigues parameters, and (viii) Hamilton’s quaternions. 

One advantage of the unit quaternion representations is that it leads 
to a clear idea of what the “space of rotations” is — we can think of it as 
the unit sphere in 4-space with antipodal points identified (−q̊ represents 
the same rotation as q̊). This makes it possible, for example, to compute 
averages over all possible attitudes of an object. It also makes it possible 
to sample the space of rotations in a systematic way — or randomly — 
with uniform sampling density. 

Another advantage is that, while redundant (4 numbers to represent 
3 degrees of freedom), the extra constraint (namely that it has to be a 
unit quaternion) is relatively easy to deal with. This makes it possible to 
find closed-form solutions to some optimization problems involving rota-
tions. Such problems are hard to solve when using orthonormal matrices 
to represent rotation because of the six non-linear constraints to enforce 
orthonormality (RTR = I), and the additional constraint det(R) = +1. 

If we compose rotations using multiplication of 3 × 3 matrices, nu-
merical problems will conspire to make the results not quite orthonormal. 
It is difficult to find the “nearest” orthonormal matrix to one that is not 
quite orthonormal. Mutliplying unit quaternions may lead to quaternions 
that are no longer of unit length, but they are easy to normalize. 

When it comes to rotation vectors and composing rotations, quater-
nions may have less of an advantage. While it takes fewer operations 
to multiply two unit quaternions than it does to multiply two orthonor-
mal matrices, it takes a few more operations to rotate a vector using unit 
quaternions (although the details depend in both cases on how cleverly 
the operation is implemented). 


