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Introduction 

Basic camera calibration is the recovery of the principle distance f and the princi-
ple point (x0, y0)

T in the image plane — or, equivalently, recovery of the position 
of the center of projection (x0, y0, f )T in the image coordinate system. This is 
referred to as interior orientation in photogrammetry. 

A calibration target can be imaged to provide correspondences between 
points in the image and points in space. It is, however, generally impractical to 
position the calibration target accurately with respect to the camera coordinate 
system using only mechanical means. As a result, the relationship between the 
target coordinate system and the camera coordinate system typically also needs to 
be recovered from the correspondences. This is referred to as exterior orientation 
in photogrammetry. 

Since cameras often have appreciable geometric distortions, camera calibra-
tion is often taken to include the recovery of power series coefficients of these 
distortions. Furthermore, an unknown scale factor in image sampling may also 
need to be recovered, because scan lines are typically resampled in the frame 
grabber, and so picture cells do not correspond discrete sensing elements. 

Note that in camera calibration we are trying to recover the transforma-
tions, based on measurements of coordinates, where one more often uses known 
transformation to map coordinates from one coordinate system to another. 

Tsai’s method for camera calibration recovers the interior orientation, the 
exterior orientation, the power series coefficients for distortion, and an image 
scale factor that best fit the measured image coordinates corresponding to known 
target point coordinates. This is done in stages, starting off with closed form least-
squares estimates of some parameters and ending with an iterative non-linear 
optimization of all parameters simultaneously using these estimates as starting 
values. Importantly, it is error in the image plane that is minimized. 

Details of the method are different for planar targets than for targets occu-
pying some volume in space. Accurate planar targets are easier to make, but lead 
to some limitations in camera calibration, as pointed out below. 
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Interior Orientation — Camera to Image 

Interior Orientation is the relationship between camera-centric coordinates and 
image coordinates. The camera coordinate system has its origin at the center of 
projection, its z axis along the optical axis, and its x and y axes parallel to the x 
and y axes of the image. 

Camera coordinates and image coordinates are related by the perspective 
projection equations: 

xI − x0 xC yI − y0 yC = and = 
f zC f zC 

where f is the principle distance (distance from the center of projection to the 
image plane), and (x0, y0) is the principle point (foot of the perpendicular from 
the center of projection to the image plane). That is, the center of projection is 
at (x0, y0, f )T , as measured in the image coordinate system. 

Interior orientation has three degrees of freedom. The problem of interior 
orientation is the recovery of x0, y0, and f . This is the basic task of camera 
calibration. However, as indicated above, in practice we also need to recover the 
position and attitude of the calibration target in the camera coordinate system. 

Exterior Orientation — Scene to Camera 

Exterior Orientation is the relationship between a scene-centered coordinate sys-
tem and a camera-centered coordinate system. The transformation from scene 
to camera consists of a rotation and a translation. This transformation has six 
degrees of freedom, three for rotation and three for translation. 

The scene coordinate system can be any system convenient for the partic-
ular design of the target. In the case of a planar target, the z axis is chosen 
perpendicular to the plane, and z = 0 in the target plane. 

If rS are the coordinates of a point measured in the scene coordinate system 
and rC coordinates measured in the camera coordinate system, then 

rC = R(rS )+ t 

where t is the translation and R(. . .)  the rotation. 
If we chose for the moment to use an orthonormal matrix to represent rota-

tion, then we can write this in component form: ⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞ 
xC r11 r12 r13 xS tx 

⎝ yC ⎠ ⎠⎝ yS ⎠ ⎝ ty ⎠ = ⎝ r21 r22 r23 + 
zC r31 r32 r33 zS tz 

where rC = (xC , yC , zC )
T , rS = (xS , yS , zS )

T , and t = (tx , ty , tz )
T . 

The unknowns to be recovered in the problem of exterior orientation are the 
translation vector t and the rotation R(. . .). 
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The Unknown Horizontal Scale Factor 

A complicating factor in the calibration of many modern electronic cameras is 
that the discrete nature of image sampling is not preserved in the signal. 

In typical CCD or CMOS cameras, the initially discrete (staircase) sensor 
signal in analog form is low pass filtered to produce a smooth video output signal 
in standard form that hides the transitions between cells of the sensor. This 
waveform is then digitized in the frame grabber. The sampling in the horizontal 
direction in the frame grabber is typically not equal to the spacing of sensor 
cells, and is not known accurately. The horizontal spacing between pixels in the 
sampled image do not in general correspond to the horizontal spacing between 
cells in the image sensor. 

This is in contrast with the vertical direction where sampling is controlled by 
the spacing of rows of sensor cells. Some digital cameras avoid the intermediate 
analog waveform and the low pass filtering, but many cameras — particularly 
cheaper ones intended for the consumer market — do not. 

In this case the ratio of picture cell size in the horizontal and in the vertical 
direction is not known a priori from the dimensions of the sensor cells and needs 
to be determined. This can be done separately using frequency domain methods 
exploiting limitations of the approximate low pass filter and resulting aliasing 
effects. 

Alternatively, the extra scaling parameter can be recovered as part of the 
camera calibration process. In this case we use a modified equation for xI : 

xI − x0 xC = s 
f zC 

where s is the unknown ratio of the pixel spacing in the x- and y-directions 

It is not possible to recover this extra parameter when using planar targets, 
as discussed below, and so it has to be estimated separately in that case. 

Combining Interior and Exterior Orientation 

If we combine the equations for interior and exterior orientation we obtain: 

xI − x0 r11xS + r12yS + r13zS + tx = s 
f r31xS + r32yS + r33zS + tz 

yI − y0 = 
r21xS + r22yS + r23zS + ty 

f r31xS + r32yS + r33zS + tz 
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Distortion 

Projection in an ideal imaging system is governed by the pin-hole model. Real 
optical systems suffer from a number of inevitable geometric distortions. In 
optical systems made of spherical surfaces, with centers along the optical axis, 
a geometric distortion occurs in the radial direction. A point is imaged at a 
distance from the principle point that is larger (pin-cushion distortion) or smaller 
(barrel distortion) than predicted by the perspective projection equations; the 
displacement increasing with distance from the center. It is small for directions 
that are near parallel to the optical axis, growing as some power series of the 
angle. The distortion tends to be more noticable with wide-angle lenses than 
with telephoto lenses. 

The displacement due to radial distortion can be modelled using the equa-
tions: 

δx = x(κ1r 
2 + κ2r 

4 + . . .)  

δy = y(κ1r 
2 + κ2r 

4 + . . .)  

where x and y are measured from the center of distortion, which is typically 
assumed to be at the principle point. Only even powers of the distance r from 
the principle point occur, and typically only the first, or perhaps the first and the 
second term in the power series are retained. 

Electro-optical systems typically have larger distortions than optical systems 
made of glass. They also suffer from tangential distortion, which is at right angle 
to the vector from the center of the image. Like radial distortion, tangential 
distortion grows with distance from the center of distortion. 

δx = −y(ε1r 
2 + ε2r 

4 + . . .)  

δy = +x(ε1r 
2 + ε2r 

4 + . . .)  

In calibration, one attempts to recover the coefficients (κ1, . . . , ε1, . . .) of these 
power series. It is also possible to recover distortion parameters separately using, 
for example, the method of plumb lines. 

Note that one can express the actual (distorted) image coordinates as a 
power series using predicted (undistorted) image coordinates as variables, or one 
can express predicted image coordinates as a power series in the actual image 
coordinates (that is, the r in the above power series can be either based on actual 
image coordinates or predicted image coordinates). The power series in the two 
cases are related by inversion. 

If the power series to adjust distorted coordinates to undistorted coordinates 
is used, then it is more convenient to do the final optimization in undistorted image 
coordinates rather than distorted (actual) image coordinates. 
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If instead the power series to adjust undistorted coordinates to distorted 
coordinates is used, then it is more convenient to do the final optimization in dis-
torted (actual) image coordinates rather than the undistorted image coordinates. 

Overall strategy 

In calibration, a target of known geometry is imaged. Correspondences between 
target points and their images are obtained. These form the basic data on which 
the calibration is based. 

Tsai’s method first tries to obtain estimates of as many parameters as possible 
using linear least-squares fitting methods. This is convenient and fast since such 
problems can be solved using the pseudo-inverse matrix. 

In this initial step, constraints between parameters (such as the orthonormal-
ity of a rotation matrix) are not enforced, and what is minimized is not the error 
in the image plane, but a quantity that simplifies the analysis and leads to linear 
equations. This does not affect the final result, however, since these estimated 
parameter values are used only as starting values for the final optimization. 

In a subsequent step, the rest of the parameters are obtained using a non-
linear optimization method that finds the best fit between the observed image 
points and those predicted from the target model. Parameters estimated in the 
first step are refined in the process. 

Details of the calibration method are different when the target is planar 
then when it is not. Accurate planar targets are easier to make and maintain 
than three-dimensional targets, but limit calibration in ways that will become 
apparent. We start by analysing the case of the non-coplanar target. 

Estimating the rotation, and part of the translation 

Initally we assume that we have a reasonable estimate of the position of the 
principle point (x0, y0). This point is usually near the middle of the CCD or 
CMOS sensor. We refer coordinates to this point using 

′ 
I = xI − x0 and ′ 

I = yI − y0x y 

so that ′ 
Ix

f zC f zC 

Next, we consider only the direction of the point in the image as measured from 
the principle point. This yields a result that is independent of the unknown 
principle distance f . It  is  also independent of radial distortion. 

′ 
IxC y yCand
= s =


′ 
Ix xC = s 

yC 
′ 
Iy




′ ′ 

√ 
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Using the expansion in terms of components of the rotation matrix R we obtain:


x = s

r11xS + r12yS + r13zS + tx 

′ 
I

′ 
I 

r21xS + r22yS + r23zS + tyy

which becomes, after cross multiplying: 
′ 
I − (r21xS + r22yS + r23zS + ty )x

′ 
I = 0s(r11xS + r12yS + r13zS + tx )y

or 
′ 
I 

′ )sr + y13I 
′ )sr (z+ y12 SI 

′ )sr (y+ y11 SI stx(xS y 
′ 
I 

′ −)r x23I 
′ −)r (z x22 SI 

′ −)r (y x21 SI−(xS x ty = 0 

which we can view as a linear homogeneous equation in the eight unknowns 

sr11, sr12, sr13, r21, r22, r23, stx , and ty 

The coefficients in the equation are products of components of corresponding 
scene and image coordinates. 

We obtain one such equation for every correspondence between a calibration 
target point (xS i , yS i , zS i )

T and an image point (xI i , yI i )
T . 

Note that there is an unknown scale factor here because these equations are 
homogeneous. That is, if we have a solution for the eight unknowns, then any 
multiple of that solution is also a solution. In order to obtain a solution, we can 
convert the homogeneous equation into inhomogeneous equation by arbitrarily 
setting one unknown — ty say — to one. 

We then have seven unknowns for which we can solve if we have seven corre-
spondences between target coordinates and image coordinates. If we have more 
than seven correspondences, we can minimize the sum of squares of errors using 
the pseudo-inverse method. 

When we obtain the solution, we do have to remember that the eight un-
knowns (the seven we solved for plus the one we set to one) can be scaled by an 
arbitrary factor. Suppose that the best fit solution of the set of equations is 

′ , st13
′ , sr  12

′ , sr  11 x , r  ′ ,23
′ , r22

′ , r21 and
 = 1
tysr 


We can estimate the correct scale factor by noting that the rows of the rotation 
matrix are supposed to be normal, that is 

2 2 2 2 2 2 r11 + r12 + r13 = 1 and r21 + r22 + r23 = 1 

We need to find the scale factor c to be applied to the solution to satisfy these 
equalities. It is easy to see that 

′2 ′2c = 1/ r21 + r ′2 
22 + r23 

and √ 
′ 2)13

′ 2) (sr+12
′ 2) (sr+11c/s = 1/ (sr


These equations allow us to recover the factor c as well as the ratio s of the 
horizontal pixel spacing to the vertical pixel spacing. 
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Note that we did not enforce the orthogonality of the first two rows of 
the rotation matrix. We can improve matters by adjusting them to make them 
orthogonal. 

Forcing orthonormality of the first two rows 

Given the vectors a and b, we can find two orthogonal vectors a′ and b′ that are 
as near as possible to a and b as follows: 

a = a + kb and b′ = b + ka 

a · b′ = a · b + k(a · a + b · b) + k2 a · b = 0 

The solution of this quadratic for k tends to be numerically ill behaved since the 
first and last coefficients (a · b) are small when the vectors are already close to 
being orthogonal. The following approximate solution can be used then 

k ≈ −(1/2)a · b 

We have to renormalize the first two rows of the rotation matrix after ad-
justing them to make them orthogonal. 

Finally we can obtain the third row of the rotation matrix simply by tak-
ing the cross-product of the first two rows. The resulting 3 × 3 matrix will be 
orthonormal if we performed the above orthonormalization of the first two rows. 

Note that there may be problems with this method of solution if the un-
known (ty ) that we decided to set equal to one in order to solve the homogeneous 
equations happens to be near zero. In this case a solution may be obtained by 
setting another unknown (tx perhaps) equal to one. An alternative is to translate 
the experimental data by some offset in y. 

Also note that we did not minimize the error in the image, but some other 
quantitity that led to convenient, linear equations. The resulting rotation matrix 
and translation components are not especially accurate as a result. This is ac-
ceptable only because we use the recovered values merely as estimates in the full 
non-linear optimization described below. 

Coplanar Target 

The above method cannot be used as is when the target is planar. It turns out 
that we cannot recover the scale factor s in this case, so we assume that image 
coordinates have already been adjusted to account for any differences in scaling 
in the x and y directions. 

With a planar target we can always arrange the coordinate system such that 
zS = 0 for points on the target. This means the products with r13, r23, and r33 



′ ′ 

8 

drop out of the equations for the image coordinates and we obtain:


=

r11xS + r12yS + txx


y
′ I

′ 
I 

r21xS + r22yS + ty 

which becomes, after cross multiplying: 
′ 
I 

′ 
I = 0− (r21xS + r22yS + ty )x(r11xS + r12yS + tx )y

or 
′ 
I 

′ )r + y12I 
′ )r (y+ y11 SI 

′ 
I 

′ −)r x22I 
′ −)r (y x21 SI− (xS x(xS y ty = 0tx 

a linear homogeneous equation in the six unknowns 

r11, r12, r21, r22, tx , and ty 

The coefficients in this equation are products of components of corresponding 
scene and image coordinates. 

We obtain one such equation for every correspondence between a calibration 
target point (xS i , yS i , zS i )

T and an image point (xI i , yI i )
T . 

As in the non-coplanar case, there is an unknown scale factor because these 
equations are homogeneous. If we have a solution for the six unknowns, then 
any multiple of that solution is also a solution. We can convert the homogeneous 
equations into inhomogeneous equations by arbitrarily setting one unknown — 
ty say — to one. 

We then have five unknowns for which we can solve if we have five corre-
spondences between target coordinates and image coordinates. If we have more 
than five correspondences, we can minimize the sum of squares of errors using 
the pseudo-inverse. 

We do have to remember though that the six unknowns (the five we solved 
for plus the one we set equal to one) can be scaled by an arbitrary factor. 

Suppose that the best fit solution of the set of equations is 
′ , t22

′ , r21
′ , r12

′ , r11 and = 1
tyr x , 

We now are faced with the task of estimating the full 3 × 3 rotation matrix based 
only on its top left 2 × 2 sub-matrix. 

Recovering the full rotation matrix for planar target 

We can estimate the correct scale factor by noting that the rotation matrix is 
supposed to be orthonormal and hence 

2 2 2 r	11 + r12 + r13 = 1 
2 2 2 r21 + r22 + r23 = 1 

r11r21 + r12r22 + r13r23 = 0 



′ ′ ′ ′ ′ ′ 

′ ′ ′ ′ 

′ 

( 
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′ 
′ 
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so we have 
′2 ′2 ′2 = k2 r11 + r12 + r13 

′2 ′2 ′2 = k2 r21 + r22 + r23 

= 0r11r21 + r12r22 + r13r23 

From the first two equations we have 
′2 ′2 ′2 ′2 

11 + r12)(r 
′2(r ′2 
21 + r22) = (k2 − r13)(k

2 − r23) 

From the third equation we get 

11r21 + r12r22)
2 = (r ′(r ′ 13r23)

2 

Subtracting we obtain 
′ ′ ′ ′2 

11r22 − r12r21)
2 = k4 − k2(r ′2(r ′ 13 + r23) 

Since 
′2 ′2 ′2 ′2(r ′2 

11 + r12 + r21 + r22)13 + r23) = 2k2 − (r ′2 

we end up with 
′2 ′2 ′2 ′ ′ ′k4 − k2(r ′2 

11r22 − r12r21)
2 = 011 + r12 + r21 + r22) + (r ′ 

a quadratic in k2 . This then allows us to calculate the missing coefficients r ′ 13 

and r23 in the first two rows of the rotation matrix using 
′2 ′2 r = k2 − (r ′2 
13 11 + r12) 
′2 ′2 r23 = k2 − (r ′2 

21 + r22) 

Only the more positive of the two roots for k2 makes the right hand sides of these 
equations positive, so we only need to consider that root. 

1 2 2 2k2 = (r 2 
11 + r12 + r21 + r22)2 

+ (r11 − r22)2 + (r12 + r21)2 (r11 + r22)2 + (r12 − r21)2 

We normalize the first two rows of the rotation matrix by dividing by k. Finally, 
we make up the third row by taking the cross-product of the first two rows. 

There are, however, sign ambiguities in the calculation of r ′ and r23. We  13 

can get the sign of the product r ′ r23 using13

r13r23 = −(r11r21 + r12r22) 

so there is only a two-way ambiguity — but we do need to pick the proper sign 
to get the proper rotation matrix. 

One way to pick the correct signs for r13 and r23 is to use the resulting trans-
formation to project the target points back into the image. If the signs are correct, 
the predicted image positions will be close to the observed image positions. If 
the signs of these two components of the rotation matrix are picked incorrectly, 
then the first two components of the third row of the estimated rotation matrix 
will be wrong also, since that row is the cross-product of the first two. As a result 
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many predicted image points will lie in the wrong quadrant of the image. We can 
test for this condition by taking dot-products of vectors in the image plane — 
measured from the estimated principle point — of corresponding measured and 
predicted image positions. We try the other signs for r13 and r23 if 

N 

(xI i xP i + yI i yP i ) < 0.  
i=1 

Estimating principle distance and distance to the scene 

So far we have estimated the rotation matrix R and the first two components of 
the translation (tx and ty ). We do not yet have estimates for the third component 
(tz ) of the translation, or the principle distance f . We can estimate these two 
parameters starting from: 

x

f r31xS + r32yS + r33zS + tz 

′ 
I r11xS + r12yS + r13zS + tx = s 

′ 
I =


r21xS + r22yS + r23zS + tyy

f r31xS + r32yS + r33zS + tz 

Cross multiplying we find 
′ tI z 

′ 
Is(r11xS + r12yS + r13zS + tx )f − x = (r31xS + r32yS + r33zS )x

′ tI z 
′ 
I(r21xS + r22yS + r23zS + ty )f − y = (r31xS + r32yS + r33zS )y

Given that we have estimates for {rij }, we can treat these as linear equations in the 
two unknowns f and tz . We can solve these equations for f and tz using one or 
more correspondence between target and image. If we use many correspondences 
we can solve the resulting over-determined system using least-squares methods. 

If the horizontal scale factor s is not known accurately we may want to only 
′ 
I 

′ , rather than equations for both xI and y
′ .Iuse the equations for y


At this point we have estimates of the rotation matrix R, the translation 
vector t = (tx , ty , tz )

T , as well as the principle distance f . We still need to find 
the principle point (x0, y0) and the coefficients of the distortion power series. We 
also need to refine the parameters estimated so far, since these estimates are not 
based on minimization of the image error, but some convenient linear equations. 

Note that the target must span a range of depth values (zC ) in order to 
recover f and tz . If target points are all at the same depth, then their image 
positions depend only on the ratio f/tz . Hence f and tz cannot be determined 
separately. Accuracy improves with the depth range of target points. In the case 
of a planar target this means that the target normal must be turned away from 
the optical axis. 
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Non-linear optimization 

At this point we minimize the image errors, that is, the difference between the 
observed image positions (xI , yI )

T and the positions (xP , yP )
T predicted based 

on the known target coordinates (xS , yS , zS )
T . The parameters of interior ori-

entation, exterior orientation and distortion are adjusted to minimize 
N N 

(xI i − xP i)
2 + (yI i − yP i)

2 

i=1 i=1 

This is best done using iterative numerical optimization such as a modified 
Levenberg-Marquardt method. 

Non-linear optimization methods work best when they have full access to 
the components of the error. In the case here, it is best to treat (xI i − xP i) and 
(yI i−yP i) as separate error components rather than, for example, lumping them 
into a combined error term of the form 

(xI i − xP i)2 + (yI i − yP i)
2 

Representation of rotation 

To use non-linear optimization methods we need a non-redundant parameter-
ization for rotation. Orthonormal matrices are redundant since they use nine 
numbers to represent just three degrees of freedom. Maintaining the six con-
straints of orthonormality in the minimization is very difficult. 

Tsai’s original method used Euler angles to represent rotations. An alterna-
tive is the Gibb’s vector 

ω̂ tan(θ/2) 

The direction of the Gibb’s vector is the axis about which the rotation takes place, 
ω̂, while its magnitude is the tangent of half the angle of rotation, θ . Like all non-
redundant representations for rotation, the Gibb’s vector has a singularity. It 
occurs when the rotation is through π radians. 

An alternative is to use a redundant representation that has no singularities 
— and enforce the required non-linear constraint. The axis-and-angle repre-
sentation of rotation can be related to the unit quaternion notation. The unit 
quaternion for the rotation is 

q̊ = cos(θ/2), ω̂ sin(θ/2) 

The needed constraint that this be a unit vector is easily incorporated in the 
non-linear optimization by adding an error term of the form 

(q̊ · q̊ − 1)2 
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Sensitivity of solution 

Error in the calibration parameters is directly proportional to error in image 
measurements. The proportionality factor depends on the imaging geometry, 
and on the design of the target. Some parameters of the calibration are more 
sensitive to error than others, and some behave worse when the field of view is 
narrow or the depth range of the target limited. 

It is difficult to investigate the sensitivities to noise analytically because of the 
non-linearity of the imaging model. However, the sensitivity issue can be studied 
easily using Monte Carlo simulation. Add random noise to the calibration image 
data and recompute the calibration parameters. Repeat and collect mean and 
covariance statistics. 
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The public domain MINPACK “lmdif ’’ package can be used for the non-
linear optimization. This uses a modified Levenberg-Marquardt algorithm with 
a Jacobian calculated by a forward-difference approximation. 


