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Time to Collision Warning Chip: 

Background: 

Under certain circumstances, it is possible to estimate the time to collision 
(TTC) from a time varying image. It would be useful to encapsulate an 
algorithm for doing this into a cheap camera, ideally with computation 
done on the chip that senses the image. That way, there is no need to 
move large volumes of image data from an image sensor to a processing 
chip. 

Such a chip would perform an extreme bandwidth compression: it 
has high bandwidth in (image sequence) and low bandwidth out (time to 
collision). Such a device could be outfitted with a cheap plastic lens and 
used as a warning system, aimed, for example, out the rear of car into each 
of the two ‘blind spots’ that are not easily visible in the driver’s mirrors. 

The key to recovering the time to collision is the realization that there 
are constraints between the brightness gradient (spatial derivatives of 
brightness) and the time derivative of brightness at a point in the image. 
These depend on motion field, and the motion field in turn depends on 
the rigid body motion between the camera and the object(s) being viewed. 

Focus of Expansion: 

A related chip is the ‘focus of expansion’ (FOE) chip built by Ig McQuirk. 
This is an analog VLSI chip that finds the focus of expansion. His chip 
uses spatial and time derivatives of brightness to locate the point in the 
image towards which motion is taking place. Again, this is a high band 
width in, low band width out application. 

The difference between the two projects (FOE versus TTC) is that in 
the FOE chip, the intent is to be insensitive to the magnitude of the ve-
locity, and to distances to points in the scene, while in the TTC chip the 
opposite is the case: the intent is to be insensitive to the direction of mo-
tion instead, which is exactly what the FOE chip recovers. Note that the 
time to collision is just the ratio of velocity to distance. 

Interestingly, it is not possible to determine either absolute velocity 
or absolute distance from an image sequence, while the ratio of distance 
to velocity can be determined. Absolute distance or velocity cannot be 
determined because of the ‘scale factor ambiguity’: if we scale distances 
in the scene by some constant factor k, while also scaling the velocities 
by the same factor k, then we get the same image sequence. 

In some sense the two chips (FOE and TTC) serve complementary 
functions: one finds the direction of motion (FOE) while the other finds 
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the time until we ‘get there.’ While the FOE chips exploits ‘stationary 
points’ — points where the time derivative of brightness is zero while the 
spatial derivatives are not — the TTC chip cannot make use of information 
at stationary points, since this is insensitive to the velocity. 

Method: 

The basis of both FOE and TCC algorithms is the ‘constant brightness 
assumption’: 

dE(x, y , t) = 0
dt 

which is based on the observation that in many situations the brightness 
of a point does not change as it moves in the image. The above total 
derivative can be expanded into: 

uEx + vEy + Et = 0 

where u = dx/dt, v = dy /dt are the x and y components of the motion 
field in the image, while Ex , Ey , Et are the x, y , and t derivatives of 
brightness. For convenience this can also be written 

Er .r′ + Et = 0 

where Er = (Ex, Ey, 0)T while r ′ = (u, v, 0)T . 

The constant brightness assumption naturally does not apply in all 
cases. It is violated by a specular surfaces, since typically such a surface 
will have different brightnesses when viewed from different directions. It 
is also violated if the light sources move relative to the scene. But in many 
practical situations it is a useful and reasonable assumption. 

Motion Field: 

The image velocity (u, v) is a projection of the velocity of the correspond-
ing point in the world in front of the camera. The image point and the 
scene point are connected by a ray going through the center of projection. 
The perspective projection equation is simply 

1 1 
r = R

f R · ẑ 

where r = (x,y  , f  )T is a vector to a point in the image, while R = (X, Y  , Z)T 

is the vector to the corresponding point in the scene. Here R · ̂z = Z , with 
ẑ the unit vector along the optical axis, and f the principal distance of the 
camera (usually just slightly larger than the focal length). 

To obtain the motion field (a vector field in the image plane) we dif-
ferentiate the perspective projection equation with respect to time. 

1 R′ R′ · ˆ
r′ = − 

z
R 

z z)2f R · ˆ (R · ˆ
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where r′ = dr/dt and R′ = dR/dt. This equation relates velocities of 
scene points to corresponding velocities projected into the image plane. 
This can also be re-written using some vector identities and the perspec-
tive projection equation: 

1 (r × R′) × ˆ′ = 
z 

r
f R · ẑ 

where × denotes the cross product and · denotes dot-product. 

Brightness and Motion Constraint: 

The image velocity r′ is (u, v, 0)T while the velocity in the scene is R′. If  
we insert the above equation for r′ in the brightness change constraint 
equation we get — after some manipulation: 

R′ · s
Et = 

R · ẑ 
where s = r × (Er × ẑ). The vector s can also be written in terms of its 
components 

s = fEx, f  Ey, −(xEx +yEy) 
�T 

The above equation — which applies at every image point — is a con-
straint relating measurable quantities such as spatial and time derivatives 
of brightness to unknowns such as velocities and distances in the scene. 

In the case of rigid body motion 

R′ = −t −ω × R 

where t = (U,V ,W)T is the instantaneous translational velocity of the 
camera, while ω = (A, B, C)T is the instantaneous rotational velocity. 

Since the above equation applies at every picture cell, there poten-
tially is a lot of constraint to work with. If the only unknowns are the 
parameters of rigid body motion (3 parameters for translation and 3 for 
rotation) then we have highly over-determined system and a stable solu-
tion can be achieved even in the presence of a lot of noise in the measure-
ments. 

However, in an arbitrary scene, the ‘depth’ Z = R · ẑ, is not known 
and this can vary from place to place in the image. The total number 
of unknowns increases dramatically if we add unknown depths at every 
picture cell. This can make the problem not so well posed (i.e. number of 
constraints is not greater than the number of unknowns). 

This is why we expect to have to work instead with a reduced model. 
The simplest case to investigate is a constant depth model, the next easiest 
a planar surface approximation, and then a quadratic surface. 

These simple models may prove adequate if we divide the image into 
patches small enough so that the surface images in any given patch is 
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approximately at constant depth, or approximately planar. We have to be 
careful, however, not to make the patches too small, since the component 
of motion along the optical axies becomes less well determined with a nar-
row field of view. Also, while the larger the patches, the more constraint it 
provides, a large patch is more likely to contain image components from 
more than one object. 

Ideally, the division into patches should be adaptive. If there is a lot 
of textureal detail, a small patch can be used, while if brightness varies 
only slowly, a large patch may be needed to get satisfatory results. 

Rigid Body Motion: 

If the camera is translating with velocity t and rotating with angular ve-
locity ω with respect to an object in the scene, then 

R′ = −t −ω × R 

where t = (U,V ,W)T and ω = (A, B,C)T say. Our task is to recover the 
components of motion and the depth. 

For recovering the time to impact we are actually only concerned 
about 

Z R · ẑ
T = = .

W t · ẑ 

Plan: 

We will first explore a number of algorithmic alternatives on existing work 
stations using both real image sequences created under controlled con-
ditions as well as synthetic sequences where the motion and shapes of 
objects is known exactly. 


