
MITOCW | watch?v=Xv7R6EG0Q84

The following content is provided under a Creative Commons license. Your support

will help MIT OpenCourseWare continue to offer high quality educational resources

for free. To make a donation or to view additional materials from hundreds of MIT

courses, visit MIT OpenCourseWare at ocw.mit.edu.

PROFESSOR: All right, let's get started. Thank you for showing up to this very special pre-

Thanksgiving lecture. I'm glad you guys have such devotion to security, I'm sure

that you will be rewarded on the job market at some point. Feel free to list me as a

recommendation. So today we're going to talk about taint tracking, and in particular

we're going to look at a system called TaintDroid that looks at how to do this type of

information flow analysis in the context of Android smartphones.

And so the basic problem the paper deals with is this fact that apps can exfiltrate

data. So the basic idea is that your phone contains a lot of sensitive information,

right. It contains your contacts list and your phone number and your email and all

that kind of stuff. So if the operating system or the phone itself isn't careful, then a

malicious app might be able to take some of that information and send it back to its

home server, and that server can use it for all types of nefarious things as we'll talk

about later.

The high-level solution that the TaintDroid paper suggests is that we should

basically track the sensitive data as it flows through the system, and essentially, we

need to stop it from going over the network. In other words, we need to stop it from

being passed as an argument to networking system calls. And so presumably, if we

can do that, then we can essentially stop the leak right at the moment that it's about

to happen.

So you might think to yourself, so why are traditional Android permissions

insufficient to stop these types of data exfiltrations? And the reason is that these

permissions don't really have the appropriate grammar to talk about the type of

attack that we're trying to prevent. So a lot of times these Android permissions, they

deal with these things like can an application read or write to a particular device. But

1



we're talking about something at a sort of different level of semantics. We're saying

even if an application has been granted the authority to read or write a particular

device, like the network, for example, it still might not be good to allow that

application to read or write certain sensitive data over that device to which it has

permissions.

In other words, using these traditional Android security policies, it is difficult to speak

about specific types of data. It's much easier to talk about whether an application

accesses a device or not. So you might think, all right, so that's kind of a bummer,

but maybe we can solve this problem by-- we have this alternate solution, so we'll

call this solution star. So maybe we can just never install applications that can do

reads of sensitive data and also have network access.

At first glance, that seems to solve the problem. Because if it can't do both of these

things, it either can't get to the sensitive data in the first place, or it can, but it can't

send it anywhere. So does anyone have any ideas where this probably isn't going to

work out very well? Everyone's already thinking about turkey. I can see in your

eyes.

The main reason why this is probably a bad idea is that this is going to break a lot of

legitimate applications. So you could imagine that there are a lot of programs, like

maybe email clients or things like that, that should actually have the ability, perhaps,

to read some data that's sensitive and also send information over the network. So if

we just say that we're going to prevent this sort of and type of activity, then you're

actually going to make a lot of things that work right now fail. So users are not going

to like that.

There's also a problem here is that even if we did implement this solution, it's not

going to stop a bunch of different side channel mechanisms for data leakage. So for

example, we've looked in previous classes about how the browser cache, for

example, can leak information about whether a particular site has been visited or

not. And so even if we have a security policy like this, maybe we don't capture all

kinds of side channels. We'll talk about some other side channels a little later in the

2



lecture.

Another thing that this wouldn't stop is app collusion. So two apps can actually

collaborate to break the security system. So for example, what if there's one app

that doesn't have access network, but it can talk to a second application, which

does. So maybe it can use Android's IPC mechanisms to pass the sensitive data to

an application that does have network permissions, and that second app can

actually upload that information to the server.

And even if the apps aren't colluding, then there may be some type of trickery that

an application can engage in to trick some other applications into accidentally

revealing sensitive data. So maybe there's some type of weakness in the way that

the email program is written, and so perhaps that email program accepts too many

random messages from other things that are living on the system. So perhaps we

could craft a special intent that's somehow going to trick your Gmail application, for

example, into emailing something to someone outside of the phone. At a high level,

this approach doesn't really work very well.

One important thing to think about is OK, so it seems like we're very worried about

the sensitive data leaving the phone. So what does Android malware actually do in

practice. Are there any kinds of real world attacks that we're going to be preventing

by all this taint tracking type stuff. And the answer is yes. So increasingly, malware

is becoming a bigger problem for these mobile phones. So one thing it might do is it

might use your location or maybe your IMEI for ads. So similarly to malware, it's

actually going to look and see where you are physically located in the world and

then maybe it will that oh, you're located near the MIT campus, therefore you must

be a hungry student so hey, why don't you go to my food truck that happens to be

located right where you are.

IMEI is kind of like this-- you can think of it as an integer that's like a per device

uniquefier. So this could be used perhaps to track you in ways that you don't want to

be tracked, in different locations, so on and so forth. So there's actually malware in

the wild that does things like that. Another thing that malware might try to do is steal

3



your credentials. So for example, it might try to take your phone number, or it might

try to take your contact list, it might try to upload those things to a remote server.

Maybe that's useful for trying to impersonate you, for example, in a message that's

going to be used for spam later on. There's malware out there that does things like

this today.

Perhaps most horrifyingly, at least for me, malware might be able to turn your

phone into a bot. This, of course, is a problem that our parents did not have to deal

with. Modern phones are so powerful that they can actually be used to send out

spam messages themselves. So there's actually a pretty nasty piece of malware

that's going around right now that seems to be targeting some corporate

environments that's doing precisely this. So it gets to your phone and just starts

sending out stuff.

AUDIENCE: So this type of malware, is it malware that subverts the Android OS, or is it just a

typical app? If it's a typical app, it seems that it should be able--

PROFESSOR: Yeah. That's a good question. There's both types of malware out there. As it turns

out, it's actually fairly easy to get users to click on things. So I'll give you an

example. This isn't necessarily indicative of malware, more about the sad state of

humanity. There'll be a popular game out there, let's say Angry Birds, for example.

You go to the App Store and you type in Angry Birds, I want to get Angry Birds. So

hopefully the first hit that you get is the actual Angry Birds.

But then the second hit will be something like Angry Birdss, with two S's, for

example. And a lot of people will go there, and maybe it's cheaper than the regular

version, and they go there. It's going to present that thing that says, do you allow

this application to do this, this, and this. The person is going say, yeah, because I

got to get my Angry Birds, yeah, sure. Boom, then that person could be owned. So

in practice you see now where it exploits both types of vectors. But you're exactly

right that if you assume that the Android security model is correct, then the malware

sort has to depend on users being foolish or naive and giving it network access, for

example, when your tic-tac-toe game shouldn't really have network access.

4



Yes, so you can actually have your phone get turned into a bot. This is horrible for

multiple reasons, not only because your phone is a bot but also because maybe

you're paying for data for all those emails that are getting sent from your phone.

Maybe your battery's getting ground down because you phone's just sitting around

constantly sending ads about whenever, free trips to Bermuda or whatever.

There are actually malicious applications out there that will use your private

information for bad. And the particularly bad thing about this bot here is that it can

actually look at your contact list and some spam on your behalf to people that you

know and make the likelihood of the victim clicking on something in that email much,

much higher.

One thing to note, and this kind of getting back to the discussion we just had, so

preventing this data exfiltration is very nice, right. But in and of itself, preventing that

exfiltration doesn't stop the hack in the first place. So there's actually mechanisms

that we actually should look at to prevent your machine from getting owned in the

first place or to educate users about what they should and should not click on. So

just doing this taint tracking isn't a full solution for preventing your machine from

getting compromised.

How is TaintDroid in particular going to work? Let's see. So as I mentioned before,

TaintDroid is going to track all of your sensitive information as it propagates through

the system. So TaintDroid distinguishes between what they call information sources

and information sinks. So these sources are things that generate sensitive data. So

you might think of this as things like sensors. So for example, GPS, accelerometer,

things like that. This could be your contact list database, this could be things like the

IMEI, basically anything that might help to tie you, a particular user, to your actual

phone.

So these are the things that generate the taint. And then you can think of these

sinks as being the places where we don't want tainted data to go. And so in the

case of TaintDroid, the particular sink that we're concerned about is the network. As

we'll talk about later, you can generalize information flow to more scenarios than

5



TaintDroid specifically covers. So you can imagine there might be other sinks in a

more general purpose system. But for TaintDroid, they're literally caring about the

network as the sink for information.

So in TaintDroid, they're going to use a 32-bit bitvector to represent taint. And so

what this basically means is that you can have, at most, 32 distinct taint sources. So

each sensitive data value will have a one in a particular position if it has been

tainted by some particular source of taint. That's like, has it been derived from your

GPS data, for example. Has it been derived from something from your contacts list,

and so on and so forth.

One interesting thing is that 32 sources of taint is actually not that big, right. And so

an interesting question is, is that big enough for this particular system and is it big

enough in general for these information flow systems. So in a particular case of

TaintDroid, 32 possible sources of taint seems to be somewhat reasonable,

because it's actually looking at a fairly constrained information flow problem.

So it's saying given all the sensors you have on your phone, given all of these

sensitive databases, and things like that, 32 seems roughly the right order of

magnitude in terms of storing these taint flags. And as we'll see in the

implementation of this system, 32 is actually very convenient, too, because what

else is 32 bits? Well, an integer. So you can actually do some very efficient

representations of these taint flags in the way that they actually build this.

As we'll discuss a little bit later, though, if you want to expose information flow to

programmers in a more generic way, so for example, if you want programmers be

able to specify their own sources of taint and their own types of sink, then 32 bits

probably isn't enough. In systems like that you actually have to think about including

more complex runtime support for a larger label space. So does that all make

sense?

OK so roughly speaking, when you look at the way that a taint flows through the

system, at a high level, it basically goes from the right hand side of a statement to

the left hand side. So as a very simple example, if you had some statement, like you

6



declare an integer variable that's going to get your latitude, and then a high level

you call gps.getLat(), then essentially this thing here is going to generate a value

that has some taint that's associated with it.

Some particular flag will be set that indicates that hey, this value I'm returning

comes from a sensitive source. So the taint will come from here on the right hand

side and go over here to the left hand side, and now that is actually tainted. So

that's sort of what it looks like from the perspective of the human developer who

writes source code. However, the Dalvik VM actually uses this register-based format

at the lower level to actually build programs, and that's actually the way that these

taint semantics are implemented in reality.

This is what's explained in table one of the papers, so they have this big list of

classes of opcodes, and they describe how taint sort of flows for those types of

opcodes. So for example, you might imagine that you have an operation that looks

kind of like a move, and so it mentions a destination and a source. So in Dalvik, to

register a base virtual machines, so you can think of these as being registers on this

sort of abstract computation engine. And so essentially what happens here is that,

like I said, taint goes from the right hand side to the left hand side. So in this case,

when the Dalvik interpreter executes this instruction here, it's going to look at the

taint label, this, and it's going to assign it over here.

Then you might imagine you have another instruction that's like a binary operation.

So think of this as something like addition, for example. So here you'll have a single

destination, but then you'll have two sources. And what will happen in this case is

that when Dalvik interpreter encounters this instruction, it'll take the taints of both of

these, construct a union of those, and then assign that union to be the taint tag over

here.

Does that all make sense? It's fairly straightforward. So the table breaks down all

the different types of instructions that you'll see, but to a first approximation, these

are the most common ways that taint propagates through the system. Now there

are actually some interesting special cases that they mention in the paper. So one

7



of those special cases involves arrays.

Let's say that you have some code that's going to declare a character, and you get

the value for the character somehow, doesn't really matter. And then let's say the

program declares some array, we'll call it upper(). And it's basically going to have

uppercase versions of letters. And so one very common thing to do in code is to

index into an array like this using, for example, maybe just C directly, because as

we all know, Kernighan and Ritchie teach us that basically characters are integers,

so hooray for that. So you can imagine that you have some code that says

something like the upper case version of this character here is going to be whatever

is at a particular index in this table here, in the index that table by c like this. So

there's a question of what taint should this receive.

It seems pretty straightforward what should happen in these cases, but in this case,

it seems like we have multiple things that are going on. We've got this array here

that may have some type of taint, we've got this character c here that may have

some type of taint. What Dalvik decides to do in this case is a little bit similar to what

it does in the case of this binary op here. So it's essentially going to say that this

character over here is going to get the union of the taint of c and also of the array.

And the intuition behind that is that to generate this character, we somehow had to

know something about this array here. We had to know something about this index

here. So therefore I guess it makes sense that this thing should be as sensitive as

both of these things combined.

AUDIENCE: Can you explain again move op and binary op, what exactly it means, like the union

of a taint.

PROFESSOR: Yes, so imagine that-- let's look at the move op here. So imagine that this source

operation here just had-- actually, let me get more concrete. So each variable, as I'll

described in a second what a variable is, has this integer, essentially, that has a

bunch of bits that are set according to what taint it has. So imagine each one of

these values flying around has this associated integer flying around that has some

bits set.

8



So let's say that this source had two bits set, corresponding to the fact that it had

been tainted by two things, it doesn't really matter. So what the interpreter will do is

it will look at this source thing, it'll look at the associated integer, and it'll say aha. I

should take that integer has those two bits set and then essentially make that

integer the taint tag for this.

So that's sort of a simple case, right. The more complicated case, like what does the

union actually look like. So imagine that we've got these two things here and we've

got source 0, source 1. And so I'm going to show you here, these are the tainted

bits for this particular--

AUDIENCE: [INAUDIBLE]?

PROFESSOR: Yeah, so imagine that you have this is the taint for this one. And imagine that the

taint for this one is this. So what's the taint going to look like for dest? You basically

take all of the bits that are saying either one of those and then assign that to that

throwback to this one.

AUDIENCE: All right, thanks.

PROFESSOR: Yeah, no problem. And so one reasons, so once again I should emphasize this, so

since we can represent all the possible taints in this 32 bits, as we were just

discussing, doing this operation here, it's just bitwise operations. So this actually

really cuts down on the overhead from implementing these taint bits. If you had to

express a larger universe of taints then you might be in trouble, because you might

not be able to use these very efficient bitwise operations to do things. Any other

questions about that? OK.

So the way that arrays work is a little bit like that binary op like I mentioned. So this

is going to get the union of the taint of this and that. And so one design decision that

they made in TaintDroid is that they associate a single taint tab with each array. So

in other words, they're not going to try to taint all the individual elements in there. So

basically what's going to end up happening is that this is going to save them storage

space, right, because for each array they declare, they'll just have a single through

9



route to the entity that sort of floats around that array and represents all the taint

that belongs to that array.

There is one question about why is it safe to not have a finer grain system for taint.

Because it seems like an array is a collection of data, so why shouldn't we have a

bunch of labels flying around for each thing that's in that array? And so the answer

to that is that by only associating one taint tag with the array and making it the union

of all the things that's inside, that actually is going to overestimate taint. So in other

words, if you have an array that has two items in it, and that array is tainted with the

union of all of those things, well, that's probably a little bit-- it's conservative.

Because it may be that if something only accesses this, maybe it didn't learn

anything about the taint that was over here.

But by being conservative, hopefully we will always be correct. In other words, if we

underestimate the amount of taint that something had, then we might accidentally

disclose something that we didn't want to actually disclose. But if we overestimate,

then in the worst case, maybe we prevent something from going outside of the

phone that should actually OK, but we're going to be err on the side of safety. Does

that all makes sense?

Another instance of-- a sort of special case taint propagation that they mention are

things like native methods. And so native methods might exist inside of the v in

itself, so for example, the Dalvik VM exposes some function like a

System.arraycopy(), so we can pass in anything through this, and internal to the

VM, this is implemented in C or C++ code for reasons of speed. That's one type of

example of a native method you might have.

Another thing you might have, a type of native method is what they call JNI expose

methods. So the native interface essentially allows Java code to call into code that is

not Java, that's implemented using x86 or ARM or something like that. There's a

whole calling convention that's exposed here to allow those two types of stacks to

interoperate. And so the problem with these native code methods, from the

perspective of tracking taint, is that this native code is not being executed directly by

10



the Dalvik interpreter. In fact, it is often not even Java code, maybe C or C++ code.

So that means that once execution flow goes into one of these native methods,

TaintDroid can't do any of this taint propagation that it's doing for code that lives in

the Java world.

So that seems a little bit problematic because these things are kind of like black

boxes. You want to make sure that when these methods return, we can actually

somehow represent the new taint that was created by the execution of those

methods. And so the way that the authors solve this issue is, they essentially result

to manual analysis. So they basically say, there are not a whole lot of these types of

methods here. So for example, the Dalvik VM only exposes a certain number of

functions like Systems.arraycopy(), so we as human developers can look through

this relatively small number of calls and essentially figure out what the taint

relationship should be.

So for example, they can look at something like array copy and say, OK, based on

what we know the semantics of this operation are, we know that we should taint the

return values from this function in a certain way given the input values to this

function. And so how well does this scale? Well, if there are in fact only a small

number of things exposed by, for example, the VM in native code, this actually

works OK. Because if you assume that the Dalvik VM interface doesn't change very

often, then it's actually not too burdensome to look at these things, view the

documentation, and figure out how taint's going to spread.

This may or may not be more troublesome. They give some empirical data that

suggests that a lot of applications are not, in fact, including code alongside of them

that's actually going to execute in C or C++. So they argued that empirically, this is

not going to be a big problem. They also argue that for certain types of method

signatures, you can actually automate the way in which these taint calculations are

done. So they say that, for example, if only integers or strings are pass in to some

of these native functions here, then we can just do the standard thing of tagging the

output value with the union of all things the taints of the input. So in practice, it

seems like this isn't probably going to be too big of a problem here. AUDIENCE: But

11



why couldn't you just scan-- whatever scans your code [INAUDIBLE]?

PROFESSOR: Oh yeah, so in practice, what do they do. So they know that whenever the

interpreter is going to execute something like this, then when the return value

comes back, they do have special case code that's going to automagically say

return values of System.arraycopy() should have this taint assigned to it.

AUDIENCE: Right, so what's the manual part of it?

PROFESSOR: Oh, the manual part of it is figuring out what that policy should be in the first place.

So in other words, if you just look at off the shelf Taint or off the shelf Android, this is

going to do something for you, but it's not going to automatically assign Taint in the

right way. So someone looks at this and figures out what that policy is. Make sense?

Any other questions?

It doesn't look like this is going to be a big problem in practice, although you can

imagine that, for example, if there was this increasing amount of applications that

define these native outcalls, then we could be in a little bit of a problem. All right.

So another type of data that we have to worry about assigning taint to, IPC

messages. And so IPC messages are essentially treated like arrays. So each one of

these messages is going to be associated with a single taint that is the union of the

taint of all the constituent parts. Once again, this helps with efficiency because we

only have to store one taint tag for each one of these messages. And in the worst

case, this is conservative, it overestimates taint. But that should never result in a

security leak. At worst, it should only result in something that should have been able

to go over the network not being able to go on the network.

This is how things work when you're constructing the message, so that message

gets the union of all the taint of its components. Then when you're reading it, what

you receive in the message-- so extracted data gets the taint of the message itself,

which makes sense. So that's how IPC messages are treated.

Another resource you might worry about is how a file's handled. So once again each

file gets a single taint tag, and that tag is essentially stored alongside the file in its

12



metadata on stable stores like the SD card or whatever. So this is basically the

same conservative scheme that we've seen before. So the basic idea is that the

application accesses some sensitive data like, for example, your GPS location,

maybe it's going to write that data to a file.

So TaintDroid updates that file's taint tag with the GPS flag, maybe the application

closes down, later on some other application comes out, it reads that file. When it

comes into the VM, into the application, TaintDroid will look and see that it has that

flag marked, and so any data that's derived from reading that file will also have that

GPS flag set. So pretty straightforward, I think.

So what kind of things do we have to taint in terms of Java State. So there's

basically five types of Java objects that need taint flags. And so the first kind of thing

is local variables that live in a method. So we can imagine back over here, this is a

local variable, char c, for example. So we have to assign taint flags to those things.

You can also imagine that method arguments need to have taint flags. Both of these

things here, these live in a stack. So a TaintDroid has to keep track of assigning

flags and whatnot for those types of things. Also we need to assign flags to object

instance fields. And so this is like, imagine that I have some object called c, it's a

circle so of course the proper thing to do is I want to look at its radius. Here's a field

here. And so we have to associate taint information for each one of these fields

here.

Java also allows you to have a static class field, and so you need taint information

for those. This is saying something like, for example, maybe the circle that some

property, OK, we'll assign some taint information there. Then arrays, as we've

already discussed before, we'll assign one piece of taint information per that entire

array. And so the basic idea for how we're going to store these taint flags at the

implementation level, is that we're going to try to basically store the taint flags for a

variable near the variable itself.

The basic idea here is we've got, for example, let's say some integer variable, and

we want to store some taint state with that. We want to try to keep that state as

13



close to the variable as possible for reasons of making the cache work efficiently at

the processor level. So if we were to store taint very far away from that variable, that

can be problematic because probably, the interpreter is going to look at the memory

value for the actual Java variable. It's going to want to very quickly thereafter, or

even before that, look and see what the taint information is. Because if you look at

these operations here, the same places in the code where the interpreter's looking

at the values, it's also looking at taint.

Basically by storing these things close to each other, you try to make the cache

behavior better. And the way that they do this is actually pretty straightforward. So if

you look at what they do for method arguments and local variables that live on a

stack, they essentially allocate the taint flags right next to where the variables are

allocated. So let's say that we have our favorite thing in this class, a stack diagram,

which you'll probably hate after you get out of here.

So you've got some local variable 0 on the stack, and then what TaintDroid will do is

it will store the taint tag for that variable right next to where that local variable is in

memory. So similarly, if you had another local variable here, then you would see its

taint tag right down here. So on and so forth. Pretty straightforward. So hopefully

you get these things in the same cache line, that's going to make the accesses very

cheap. Yeah?

AUDIENCE: I was just wondering, how can you have a single flag for an entire array and a

different flag for every property of an object. What if one of the methods of the

object can access data which is stored in its properties. That would like-- know what

I mean?

PROFESSOR: Let's see. So you're asking as a policy reason, why?

AUDIENCE: As a policy reason, right.

PROFESSOR: So I think some of this they do for implementation efficiency reasons. I think that for

the case-- so they have some other rules, too. For example, they say that they don't

say a length of the data array, is actually going to leak information, so they don't

14



propagate taint for that. So some of it is just for reasons of efficiency. I think that in

principle, that there's nothing that stops you from saying, take every element in the

array and, when you do some particular access on it, then you just say the thing on

the left hand side's going to get the taint, only that items.

It's not completely clear that's the right thing to do, though, because presumably in

getting that thing into the array in the first place, the thing that did that had to know

something about the array in some way. So I think it's a combination of both policy

reasons-- they think that by being overly conservative, you shouldn't allow any data

leaks that you want to prevent. And also I think that it kind of does intuitively make

sense that accessing an array, you should have to know something about that

array. And when you have to know something about something, that typically means

that you want to get tainted by. Any other questions?

OK, so this is the basic scheme that they use for essentially storing all of this

information close to each other. So you can imagine that for class fields and for

object fields, you do a similar thing. So in the declaration of the class, you've got

some slot memory for a particular instance variable, and then right next to that slot

you have the taint information for that particular variable. So I think that's all pretty

reasonable.

That's kind of a high level overview of how TaintDroid works, so if you get all this,

then the basic idea behind TaintDroid is actually pretty simple. So at system

initialization time or whatever, TaintDroid looks at all these sources of potentially

tainted information, and essentially assigns a flag to each one of these things. So

things like your GPS, your camera, and so on and so forth. As the program

executes, it's going to pull out sensitive information from these sensitive sources,

and then as that kind of thing happens, the interpreter is going to look at all these

types of op codes here and basically follow those policy rules in the table on the

paper, and figure out how to propagate taint through the system.

So the most interesting part is what happens if data attempts to exfiltrate itself. So

essentially, TaintDroid can sit at the network interfaces and they can see everything

15



that tries to go over the network interface. We actually look at the taint tags there

and we can say if data that's trying to leave the network has one or more taint flags,

then we will say no. That data will not be allowed to go in the network.

Now what happens at that point is actually kind of application-dependent. You could

imagine that TaintDroid shows an alert to the user which says hey, somebody's

trying to send your location over the network. You could imagine that maybe

TaintDroid has some policies that are built in which, for example, maybe it allows

that network flow to go out, but it zeros out all that sensitive data, so on and so

forth. That's from a certain perspective, a little bit orthogonal to the core contribution

of the paper, which is to find those data exfiltrations in the first place.

In the evaluation section of the paper, they discuss some of the things that they

found. They do find that Android applications will try to exfiltrate data in ways that

were not exposed to the user. So for example, they will try to use your location for

advertisements, they will send your phone number and things like this to remote

servers. Once again, it's important to note that these applications, typically they

weren't breaking the Android security model in the sense that the user had allowed

these applications with access to the network, for example. Or they had allowed

these applications to have access to things like a contact list.

However, the applications did not exposed to the user in the EULA, in the End User

License Agreement, that hey, I'm going to take your phone number and actually

send it to some server in Silk Road 8 or whatever. That's actually misleading and

deceptive, because most users, if they'd actually seen that in the EULA and they'd

known that was happening, they might have at least had a second thought about

whether they want to install this application or not.

AUDIENCE: Is it reasonable to guess that even if they put it in the EULA, that that's not really

worth it because people never read those.

PROFESSOR: Yes, it is, in fact, quite reasonable to assume that. So even well trained computer

scientists like myself do not always check out the EULA because it's like, you gotta

have Flappy Birds or what are you going to do. I think what is useful, though, and

16



this is kind of spiritually unsatisfying but useful in practice, is that if it is put in the

EULA, then maybe there will be some virtuous individuals who do actually read the

EULA.

AUDIENCE: And they could tell you like--

PROFESSOR: That's right, that's right.

AUDIENCE: --don't do that one.

PROFESSOR: Yeah, Consumer Reports or some moral equivalent will say our job is to read

EULAs, and by the way, you shouldn't download this app. But you're exactly correct

that relying on users to read pages of tiny print is basically-- they're not going to do

it. They're going to hit Next and then keep on going. OK, so any questions up to this

point?

I think that the rules for how information flows through the system are fairly

straightforward. So as we were discussing, it's basically taint from the right hand

side goes to the left side. Sometimes, though, these information flow rules can have

somewhat counterintuitive results. So imagine that an application is going to

implement its own linked list class. So it's going to define some simple class up here

called ListNode and it's going to have an object field for data. And then it will have a

ListNode object which represents the next thing in the linked list.

Suppose if the application assigned some tainted data to this field here. Some

sensitive data derived from a GPS or whatever. So one question you might have is

what happens when we calculate the length for this list. Should the length of the list

be tainted? It may strike you as a bit counterintuitive that the answer is probability

no, at least in the way that TaintDroid and a lot of these systems define information

flow. So what does it mean to add a node to the linked list.

It basically means three things. So the first thing you do is you allocate a new list

node to contain this new data that you want to add. Then the second thing you do is

you assign to the data field of this new node. And then the third thing that you do is

you do some type of patch up of the next pointers to actually splice the node into

17



the list.

What's interesting is that this step here doesn't actually involve the data field at all.

Just looking at these next values. Right, so what's interesting is that since only these

data objects are tainted, how we calculate the length of a list. We basically start

from some head node and we traverse these next pointers, and we count how

many we traverse. So that algorithm is not going to touch the tainted data at all.

So interestingly, even if you have a linked list that's filled with tainted data, then just

calculating the length of that list won't actually result in the generation of value that

is tainted at all. So does that makes sense? That may seem a little bit

counterintuitive, and this is one of the reasons why, for example, like when we were

talking about the array, for example. They say array.length, I'm not going to

generate any taint for that. It's because of reasons like this.

If you wanted a stronger assurance about-- not stronger assurance. But if you

actually want to calculate the length of the list to generate a kind of value, we could

imagine that your implementation, it's a bit goofy, but you can just decide to touch

data for no real semantic reason other than to generate taint in the resulting length.

Or, as I'll discuss towards the end of the lecture, you could actually use a language

which allows you the programmer to define your own types of taint. And then you

can actually define your own policies for things like this.

One nice thing about TaintDroid is that you as a developer, you don't have to label

anything. TaintDroid basically does that for you. It says here's all the sensitive stuff

that can be a source, here's all the sensitive stuff that can be a sink. You as a

developer, you're ready to go. But if you want that pointer to be controlled, you

might have to build some of the policies yourself.

All right, so in terms of performance overhead of TaintDroid, what does that look

like? The overheads actually seem to be pretty reasonable. So there's going to be

memory overhead, and that's the memory overhead, essentially, of storing all of

these taint tags. And so there's going to be CPU overhead, and this is basically to

assign, propagate, and check those taint calculations. And that's because of
18



overhead like here. So any interpreting for the Dalvik VM, we're actually doing

additional work. So looking at the source, looking at this 32 bit taint information,

we're doing the or operations that we discussed before, and so on and so forth. So

that's computational overhead.

These overheads actually seem to be pretty moderate. So for memory, the authors

report about 3% to 5% in terms of the extra RAM space you need to store those

taint tags. So that's not too bad. The CPU overhead is higher, which I think makes

sense. They're both somewhere between, let's say, 3% and about 29% CPU

overhead. And the reason why I think it's reasonable to see why that's higher is

because you can imagine that every time you step into the interpreter loop, you're

having to look at these tags and do some operations. So even though it is all these

bitwise operations, you have to do that all the time. So that seems like it's going to

get painful, whereas basically, the overhead for this, OK, so you put a couple extra

integers in memory somewhere. That doesn't seem, maybe, too bad.

Even on it's high end, 29%, in of itself maybe that's OK, because Silicon Valley

keeps telling us that we need phones that have like quad cores and whatnot, so

probably have a lot of spare cycles sitting around. So maybe that's not all that

crushing. Although there might be a problem with battery life. So even if you have

these extra cores, you might not want your phone getting hot in your pocket as

you're just sitting there, just sort of churning and calculating some of this stuff.

I think for here, the main issue here would be if this is bad for your battery. If it's not

bad for your battery, then probably even at that high end, that may not be that bad.

So that is essentially an overview of how TaintDroid works. Any more questions

before we--

AUDIENCE: Do you tag something that also has been there all the time? Do you tag every

variable, or only tag the ones that have this?

PROFESSOR: Yes, so you basically tag everything. So in theory, there's nothing that prevents you

from not allocating any taint information for stuff that has no taint at all. I think the

problem, then, with it-- then once something gains even one bit of taint, then you
19



have to do dynamic sort of layout changes. So what if on the stack, this local here,

then it had a taint, so now you're allocating with this, and it does get taint. Or you

have that extra taint flag live on the heap, and you're going to see how it rewrites

the stack, and then someone made your code-- so we're going to see how that

works. So in practice, typical use is like shadow memory somehow, so every byte in

the application is backed up by some byte of extra information somewhere. And in

the case of TaintDroid, that shadowing actually lives alongside of the actual variable

itself. Anyone has another question? OK. Cool.

This system essentially tracks information at the level of these high level Dalvik VM

instructions. So one thing you might think to yourself is, could we track taint at the

level of x86 instructions or the ARM instructions. One reason why that might be

useful is because then we could actually understand how information flows through

arbitrary applications, not just ones that are running inside this tricked out VM that

requires you to run Java and so on and so forth. So why not track taint at that level.

It turns out that you can, in fact, do that. So there are projects that we looked at at

tracking taint at this low level. What's nice is that you maybe get that increased

coverage. You don't throw a line into [INAUDIBLE] for how, for example, Java code

interacts with native code methods. It's all eventually going to result down to x86

instructions executed, so that removed a lot of the manual effort that you as a

developer have to do to sort of understand it's the taint semantics if you use native

methods. But the problem with that, if we track at this low level, it can be very

expensive to do this. You can also get a lot of false positives. So if they're spec'd to

the expense, there's also this issue of correctness.

As you may know, x86 is an adversarially complex instruction set. There's all kinds

of crazy things that it can do. I don't know if you've ever seen an x86 instruction

manual, they're huge. So they'll have one huge manual that's this thick, and then it'll

say this is instructions whose letters start with M through P, and there'll be this full

on series about that. So it's actually pretty tricky to think about what it means to

actually track taint at the level of x86 instruction. Because even seemingly simple

instructions, like sometimes at, they're setting all types of internal processor

20



registers and flags and things like that. So it's very difficult to describe in the first

place.

If you could do that, it's also oftentimes very expensive. You're sort of looking at

things at a very, very low level. So the amount of state you have to track might get

very large very quickly. It might be a very sensitive computational clause. Then

there's this issue of false positives. This is actually pretty devastating. You can get

into bad problems if you ever have kernel data that improperly gets tainted. And if

this happens, maybe because your infrastructure's trying to be ultraconservative, it

doesn't want to miss anything, so it says well, I'm going to err on the side of

security. And I'm going to taint some of this kernel data structure, then what you get

here is this exciting term they call taint explosion.

What this basically means is that at a certain point, there are certain things that if

they end up getting tainted, they're involved in so many calculations that essentially

everything in your program gets polluted. It's like one of these things in Dungeons

and Dragons where you touch this evil thing and eventually death spreads

throughout your body.

This is very bad, because if you can't tightly constrain the way that taint flows

through the system, then eventually what's going to end up happening is that you let

this run for a while, the system's going to say you can't do anything. You can't send

anything over the network, you can't display anything on the screen, because

everything in your system seems like it's been tainted by some sensitive error, even

if that's not the case.

One way that this can happen is if somehow the stack pointer or the break pointer

get tainted. If this happens, you're probably in a world of hurt. You can imagine that

all of the instructions in x86, for example, that access the stack, they all go through

ESB. So the stack register gets corrupted somehow, that's bad. If the break point

register gets bad, a lot of times when you want your equivalents to access local

variables, it has to go the EBP indirectly. So if anybody ever touches those in terms

of taint, it's basically game over. So there's a link in the lecture that's about a paper

21



that acknowledges some of this stuff and basically says that we have to be very

careful when we do taint tracking at this low level because very quickly, if you're

looking at how this works in the Linux kernel, there are certain optimizations the

Linux kernel would do to make its code fast, but will result, unintentionally, in the

break pointer or the stack pointer getting tainted. And once that happens, you can't

really do anything useful with the taint tracking system.

AUDIENCE: So how do you do this [INAUDIBLE] programs? It seems like you have all these

register files in the CPU.

PROFESSOR: Yeah, so great. So all those register files, it hangs back to the correctness case. So

unless you are very, very good at understanding x86 architecture, there are going

to be things that you miss. It terms of computation level, how do you actually do this

thing. There's this-- I think the most popular way, and I could be wrong about this.

So when I say it's popular, the way I know about, because I'm a knowledge

[INAUDIBLE], right. There's this system submitter called Bochs, I think it's spelled

like this. They actually have something called TaintBochs, which actually does x86

level innuation of flow.

And it's actually an interpreter, you can think of it as. So it's going to take your entire

OS and all your applications, and it's going to look at each x86 instruction and try to

simulate what the hardware would do. So you can imagine this is very, very slow.

What's nice about that is you don't require any hardware support, and then it's

relatively straightforward to tweak your software model of how things work, if you

discovered that you weren't tracking some registered files or something like that.

AUDIENCE: So the ideal solution would be architectural support.

PROFESSOR: Yeah, so there have been techniques to do that, too. That gets a little bit subtle

because, for example, if you look here you've looked at how we've allocated the

taint state next to the variables themselves. So if you bake in that support in the

hardware, it can be very difficult to, for example, change the way you want the

layout to work. Because then it's like baked into the silicon. You could imagine doing

some of this because at a high level-- where do we have it. So the Dalvik VM and

22



TaintDroid is executing these high level instructions and it's assigning taint at this

level. You can imagine doing that at the hardware level, too. So actually, if this is the

silicon, you can probably make that work. So that's definitely possible. You had a

question?

AUDIENCE: What does TaintDroid do with information built from branching and permission tests.

PROFESSOR: Oh, we're going to get to that in a second. So just hold that thought, we're going to

get to that.

AUDIENCE: I'm curious, how long was it to things like buffer overflow because all the things are

so nested together [INAUDIBLE]?

PROFESSOR: That's a good question. So presumably, one would hope that in a language like

Java there are no buffer overflow, right. But you can imagine in a language like C,

for example, where you didn't have this protection, maybe there's something

catastrophic that could happen or somehow, if you did a buffer overflow and then

you were able to overwrite taint tags and you could set this to zeros, then you could

just let your data exfiltrate.

AUDIENCE: I think if it's super predictable, like one every other one for the next q variables,

there's no stacking--

PROFESSOR: I was going to say, that's exactly right. So you run into somewhat similar issues like

what we can discuss with the stack canaries, because basically we have this data

on the stack, like in this particular layout, that you don't neither want to make it

impossible to overwrite, or if it is overwritten, one that's hacked in some way. So

you're exactly right about that.

So you can in fact do taint tracking at this low level although it may be expensive

and a little bit difficult to get right. So you might say well, why don't we just punt on

this whole issue of taint tracking in the first place and instead we're just going to look

at the things that the program tries to output over the network, let's say, and just do

a scan for data that seems sensitive. That seems to be much more lightweight, you

don't have to do this dynamic instrumentation of all the things the program's doing.

23



The problem with that, though, is that that will only work as a heuristic. In fact, if the

attacker knows that this is what you're doing, then it's pretty easy to subvert that. So

if you're just sitting there and you're trying to do a grep for numbers, Social Security

numbers, then the attacker can just use base 64 encoding, or do some other wacky

thing, compress it. It's actually trivial to get past that type of filter. So in practice,

that's completely insufficient from the security perspective.

Now let's get back to the question that you brought up, which was basically how can

we track flows through things like branches, for example. So this is basically going

to lead us to a topic that's called implicit flows. And so an implicit flow occurs

typically when you have a tainted value that's going to affect the way that another

variable is assigned, even though that implicit flow variable doesn't directly assign

variables. This will make more sense with a concrete example.

Let's say that you have an if statement that does something like, it's going to look at

your INEI and it's going to say if it's greater than 42, maybe I'm going to assign 0 to

x. Otherwise I'm going to assign 1. So what's interesting here is that we're looking at

this sensitive data here and we're doing some comparison of it up here, but when

we're assigning to x down here, we're not actually assigning something that is

directly derived from the sensitive data here. This is an example of one of these

implicit flows. Because the value of x is actually dependent on this thing here, but

the adversary, if they're clever, can sort of structure their code in a way that there's

no direct assignment.

Now note that even here, instead of just assigning to x, you can just say let's try to

send something over the network. You might say over the network x is 0, or x is 1,

or something like that. So that's an example of one of these implicit flows that a

system like TaintDroid cannot actually handle. So do people sort of see the problem

here at a high level? Yes. This is called an explicit flow as contrast to those direct

flows like from the assignment operator.

AUDIENCE: What if [INAUDIBLE] a native power function that did exactly [INAUDIBLE]? Because

the output in that case would be, right?

24



PROFESSOR: Well, let's see. So it depends. So if I understand your question correctly, you're

saying there could be some native function that does something that's sort of

equivalent to this, and so for example, TaintDroid wouldn't know necessarily,

because it can't look inside this native code to see this type of thing. The way that

the authors claim that they would handle that is that they would say for native

methods that are defined by the VM itself, they would look at the contract that

method exposes and they might say things like I take these two integers and then

return the average. So then the TaintDroid system would say we trust that the

native function does that, so we need to figure out what the appropriate tainting

policy should be.

However, you are correct that if something like this was sort of hidden inside and for

whatever reason wasn't exposed to the public-facing contract, then the manual

policy that the TaintDroid authors came up with might not catch this implicit flow. It

might actually allow information to leak out somehow. But I mean for that matter,

there might even be a direct flow in there that the TaintDroid authors couldn't see

and you might still have an even more direct leak.

AUDIENCE: So in practice, this seems very dangerous, right? Because you can literally send the

whole [INAUDIBLE] value by just looking at this last three--

PROFESSOR: That's right. We had class a few times where you'd sit in a while loop and you'd try

to construct these implicit flows to do these types of things. There's actually some

ways that you can think about trying to fix some of this stuff. At a high level, one

approach you can do to try to prevent this stuff is you can actually assign a taint tag

to the PC. Then essentially you taint it with the branch test. So the idea here is that

we as humans can look at this code here and we can tell that there's this implicit

flow here, because we know that somehow to get here, we had to look at the

sensitive data.

So what does that mean at the implementation level? That means that to get here,

there's something about the PC that has been tainted by sensitive data. To say that

we have gotten here is to say the PC has been set to here or to here.
25



At a high level we could imagine that the system would do some analysis and it

would say that at this point in the code, the PC has no taint at all. At this point, it

gets tainted somehow by the INEI, and at this point here, it's going to have that

taint.

So what will end up happening is that if x is a variable that initially shows up with no

taint maybe we'll say OK, at this point, it's actually going to give the taint of the PC

which is actually going to taint it there. So there's some sublety here that I'm

glossing over, but at a high level that's how you can capture some of these flows

here by actually looking and seeing how the PC is getting set, and then trying to

propagate that to the targets of these if statements.

Does that all makes sense? OK. And if you're interested in learning more about this,

come talk to me, there's been a lot of research into this kind of stuff.

However, you can imagine that the system I just described may be too conservative

once again. So imagine that instead of having this code here, this was also 0. So in

this dump case, there's absolutely no reason to taint x with anything related to the

INEI, because you didn't actually leak any information in either of these branches.

But if you use it with a naive PC tainting scheme, then you might over-estimate how

much x has been tainted by. So I should say there's some subtlety you can do to try

to get around some of these issues, but it's a little bit tricky. Does this all make

sense? All right.

AUDIENCE: Just a question.

PROFESSOR: Oh, sorry.

AUDIENCE: When you get out of the if statement, so you're out of the branch, do you

[INAUDIBLE] taint out?

PROFESSOR: Yeah, so typically, yes. So like down here the PC taint would be cleared. So it would

only be set inside these branch things here. And the reason for that is because

essentially, by the time you get down here, you get down here regardless of what

26



the INEI was. So yeah, you clear that. It's a good question. Let's see.

You talked about how you might be able to taint at this very low level, even though

that might be expensive, one reason why it might be useful is because it will actually

allow you to do things like see what your data lifetimes look like. So a couple

lectures ago, we talked about the fact that a lot of times key data, for example, will

live in memory longer than you think that it should.

So you can imagine that even if some of the x86 or ARM level taint tracking is

expensive, you can imagine using it to form an audit of your system and actually

tainting, let's say, some secret key that the user entered, and just seeing where that

goes throughout your system. It's an offline analysis, it's not facing customers, so

it's OK for it to be slow. That might actually really help you to figure out oh, this

data's getting into the keyboard buffer, it's getting into the x server, it's getting to

wherever. So even if it's slow, that can still be very, very useful. So I just wanted to

mention that briefly.

One interesting thing you might think about is the fact that as I mentioned,

TaintDroid is nice because it constrains the universe of taint sources and taint sinks.

But as the developer, maybe you want to actually explicitly assert some more fine

grain control over the labels that your program interacts with. So now as a

programmer, you want to be able to say something like this. So you query some int,

and let's say we call it x, then you associate some label with it. Maybe the name of

this label is that Alice is the owner of this data, but Alice permits Bob, or something

labeled with Bob, to be able to see that.

TaintDroid doesn't let you do this, because it essentially controls that universe of

labels. But maybe as a programmer you want to be able to do a thing like this. You

can imagine that your program has various input channels and output channels,

and all of these input and output channels, they all have labels, too. And these are

labels that you as a programmer get to actually pick, as opposed to the system itself

trying to say here's this group of fine set of things. So maybe say for input channels,

you know the read values, maybe they get the label of the channel.

27



That's very similar to how TaintDroid works right now. So if you read something

from the GPS, that read value is the taint of the GPS channel, but now you as a

programmer can choose what those labels are. And then you could imagine that for

output channels that label will channel has to match some label value we've written.

You can imagine other policies here as well. But the basic idea is that there are

actually program managers that allow you the developer to pick what the labels are

and what the semantics for those labels can be. So what's nice about some of these

is they do require the programmer to do a little bit more work, but the outcome of

that work is that static checking-- and by static checking I mean checking that's

done at compile time-- can catch many types of information flow bugs.

So if you're diligent about labeling all of your network channels and screen channels

with the appropriate permissions, and you're very diligent about leaving your data

like this, what can happen is that at compile time, when you compile your program

and your compiler can tell you things like hey, if you were to run this program, then

you actually have an information leak that this particular piece of data will pass an

equal channel, which is untrusted.

And at a high level, the reason why static checking can catch a lot of these bugs is

because usually speaking, when you think of some of these annotations, they're

somewhat similar to types. So the same way that compilers can catch errors

involving types and installing type language, you can imagine that the compiler in a

language like this can codes some calculus over this label, and in many cases,

determine hey, if you would actually run this program, this would be a problem. So

you really need to fix the way that the labels work, maybe you need to explicitly

declassify something, so on and so forth.

AUDIENCE: You can't just [INAUDIBLE]?

PROFESSOR: Yeah, yeah, that's right. So depending on the language, these labels can associate

people with IO ports, all that kind of stuff. That's exactly right. So this is just

interesting to know about, because TaintDroid has a very nice general introduction

to this information flows stuff, but there's actually some really hardcore systems out

28



there than can express much richer semantics in the control of a program with

respect to information flow.

And you know, too, that when we talk about static checking and being able to catch

many bugs, it's actually preferable to catch as many bugs using static checking and

static failures as opposed to dynamic checking and dynamic failures. There's a very

subtle but powerful reason for why that is. The reason is that, let's say that we defer

all of the static checks to the runtime, which you could certainly do. There's no

reason you couldn't take all the static checks and give you a name for it. The

problem is that the failure or success of these checks is actually a covert channel,

perhaps.

So the attacker could actually feed your program some information and then see

whether it crashed or not. And if it crashed, it might say, aha, you've passed some

dynamic check of information flow, that must mean something was secret about this

value I sort of cajoled you into computing. So you want to try to make these checks

as static as possible to the greatest possible extent.

If you want more information on this kind of stuff, maybe a good place to start, a

word to search is Jif. It's a very influential system that built some of these issues of

label computation. So you can start there and sort of roll forward. My co-professor

actually has done a lot of good work on this, so you could ask him about that if you

want to talk more label stuff. That's sort of interesting to know that TaintDroid is

actually fairly restrictive in the expressiveness of the labels it allows you to look at.

There are systems out there that allow you to do more powerful stuff.

Finally, what I'd like to talk about is what we can do if we want to track information

flows in some of these legacy programs, or through programs that are written in C

or C++ that don't have all the fancy runtime support. So there's a very cute system,

some of the same authors on this paper that looks at this issue of how can we track

informational leaks in a system which we don't want to modify the application at all.

This is the TightLip system.

So the basic idea is that they introduce this notion of what they call doppelganger

29



processes. TightLip uses doppelganger processes evolved. So the first thing it does

is it periodically scans a user's file system and it looks for sensitive file types. This

might be things like your mail file, your word processing documents, so on and so

forth. So what it's going to do for each one of these files is it's going to produce a

scrubbed version. So for example, if it finds an email file, it's going to replace the to

or the from information with, let's say, a string of the same length but just dummy

data. Maybe all spaces or something like that. It does this as a background task.

Then the second thing it's going to do, at some point a process is going to start

executing, and so then TightLip is going to detect when and if the process tries to

access a sensitive file. And if such an access does take place, TightLip is going to

spawn one of these doppelganger processes. And so what the doppelganger

process looks like is very similar to the original process that tried to touch that

sensitive data, but the key difference is that the doppelganger, which I'll abbreviate

DG, reads the scrubbed data.

So imagine that-- so the process is executing, it tries to access your email file. The

system spawns this new process, the doppelganger, that doppelganger is exactly

the same as that original one, but it is now reading from the scrub data instead of

the real sensitive data.

What happens then. Essentially, TightLip, we're going to run those two processes in

parallel. It needs to just watch them and see what they do. And so in particular,

we're going to see, do the processes issue the same system calls with the same

arguments. And if that's the case, then presumably those system calls do not

depend on the sensitive data. So in other words, if I start a process that tries to

open some sensitive file, I feed it basically junk data, I let it execute. If that

doppelganger process still does the same things that the regular process would

have done, then presumably it wasn't influenced by that sensitive data at all.

So essentially doppelganger will let these processes run, TightLip will let these

processes run, and then check the system calls here. And then it might happen that

in some case the sys calls divert. So in particular, what if the doppelganger starts

30



doing things that the regular version of the process would not have done, and then

the doppelganger tries to make a network call. So just like in TaintDroid, when that

doppelganger tries to make a network call, that's when we say aha, we should

probably stop what's happening right now and then do something.

So if the system calls diverge, then the doppelganger makes a network call, then

we're going to do something. So we're going to either raise an alert to the user or

whatever. Kind of like in TaintDroid, but at this point there's a specific policy you can

add in some particular system you're going to use. But this is sort of an interesting

point at which you can say well, somehow that doppelganger process was affected

by that sensitive data that was returned. That means that maybe if the user did not

think that a particular process was going to get exfiltrated data, now the user can

actually do an audit of that program to figure out why that program returned send

that data over the network. So does anyone-- go ahead.

AUDIENCE: So if you're hitting something like a word file or whatever, you kind of have to know

what you're zeroing out and what you're [INAUDIBLE].

PROFESSOR: Good question, that's right. So I was going to discuss some limitations, and one of

the limitations is precisely that. You need to have per file type scrubbers. So you

can't just take your email scrubber and use it for Word. And in fact, if those

scrubbers miss something, so if they don't redact everything, then this system may

not catch all the possible sensitive data leaks. So you're exactly right about that. But

I think-- go ahead.

AUDIENCE: So if I understand, why should the process look at the data before saying go

ahead? Why wouldn't you just send the stuff in?

PROFESSOR: Why would the process--

AUDIENCE: If the process plans to input data, [INAUDIBLE]?

PROFESSOR: Oh, no, no. From the perspective of the doppelganger, I mean, it may try to, in fact,

look and see things like does this email address make sense, for example, before it

tries to send it out. But the doppelganger process, it shouldn't know that it's gotten

31



this weird scrubbed data. So this gets back a little bit to the question we were just

talking about. If your scrubber doesn't scrub things in a semantically reasonable

way, the doppelganger may, in fact, crash, for example. It expects things in this sort

of format, but it's not.

But at a high level, the idea is that we're trying to trick the doppelganger into doing

what it would do normally, but on data that's different in the original version and see

if there will be that divergence. So one drawback is that, like we're discussing, this

basically puts the scrubbers in TCB and if they don't work properly, doppelgangers

might crash, you might not be able to catch some violations, things like that.

But the nice thing about this is that it works with legacy systems. So we don't have

to change anything about the application itself runs. We just have to make some

fairly minor changes to the OS kernel to be able to track the system call stuff, and

then things sort of work. It's very, very nice. And the overhead of the system is

essentially the overhead of running an additional process, which is fairly low in a

modern operating system.

This is just sort of a neat way to think about how to do some type of limited taint

tracking without doing heavyweight changes to the runtime without requiring

changes from the OS-- or sorry, from the application.

AUDIENCE: Are we only doing parallel or waiting for each one? Are we running both processes

and then after that we can just check that the system calls are the same? Like when

do we check--

PROFESSOR: Yeah, two questions. So as long as the doppelganger process does things that the

OS can control and keep on the local machine, you can imagine running the

doppelganger process and the regular one forward. But as soon as the

doppelganger tries to affect external state, so maybe the network is doing this and

that. Maybe you can think of some other linked sources like that. Maybe there's

something like pipes, for example, that the kernel doesn't know how to create

doppelganger state for. At that point you have to stop it and then declare success or

victory, basically. Any other questions? All right, well, that's the end of the lecture.

32



Have a good Thanksgiving. See you next week.

33


