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Problem Set 1 – Semiconductor electronics 

Problem #1 The purpose of this problem is to develop approximations to the Fermi integral for bulk 
semiconductors. Consider GaAs (Ni= 106 at 300 K) with a donor concentration that varies from 1015 to 1019 

cm-3. 

a.	 Assuming Boltzmann statistics, calculate and plot the Fermi level as a function of the donor 
concentration. 

b.	 At high doping density the electron occupancy in the semiconductor is nearly metallic – the Fermi 
level is in the conduction band and the Fermi-Dirac function can be approximated to be at T=0. In this 
limit – known as the Sommerfild approximation, show that the carrier density varies in proportion to 

N ~ (EF − EC kT )3 2 . 

c.	 Numerically estimate the Fermi-Dirac integral. Using numerical integration, determine the range of 
doping where the Fermi level calculation is accurate to 1% under the Boltzmann approximation and 
the doping range for 1% accuracy under the Sommerfeld approximation. 

d.	 A semiconductor is said to be degenerate when the Fermi level lies within either the conduction or 
valence bands. At what doping density is this n-type material degenerate ? 

e.	 Determine the Fermi level for GaAs doped with acceptors instead of donors. Include the effects of the 
valence band degeneracy between light and heavy holes, but not the slit-off band. At what doping 
density is the GaAs degenerate ? 



Problem #2 The purpose of this problem is to familiarize you with the calculation of carrier concentrations 
out of equilibrium. A slab of GaAs is illuminated by a beam of light with a wavelength of 519 nm. At this 
wavelength, the absorption coefficient of GaAs is α=104 cm-1. The excess carrier lifetimes are τp=τn=1 ns 
and the slab is much thicker than 1/α. 
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a.	 Determine the excess electron distribution (∆N(x)) for incident optical powers of P=1, 10, and 100 mW 
in a beam area of 50 µm2. Neglect carrier diffusion and plot only for 0-5 µm deep into the sample. 

b.	 Relate the excess carrier concentration to the electron quasi-Fermi level, Efc(x). Plot Efc(x) for the 
various optical powers again from 0-5 µm. 

c.	 Since the slab is much thicker than 1/α, the total photogenerated carrier concentration can be 
determined. If a DC electric field is applied along the length (L) of the slab, determine the 
photocurrent that flows as a result of the applied field and the incident light. 

d.	 This type of photodetector is known as a photoconductive detector. From (c), it can be seen that the 
total current can be greater than qP/hv - which is the current if every photon generates one electron. 
Since there is excess photocurrent, there must be electrical gain. What is the physical origin of this 
gain ? 



Problem #3 The purpose of this problem is to familiarize you with SimWindows. Consider a p-i-n diode 
consisting of doped Al0.2Ga0.8As layers, that are each 1 µm thick, surrounding an intrinsic (unintentionally 
doped) GaAs that is 0.5 µm thick.  Consider that each of the Al0.2Ga0.8As regions are doped with 
acceptors/donors at 5x1017 cm-3. Use SimWindows to generate all of the data for this exercise. 

Al0.2Ga0.8As GaAs Al0.2Ga0.8As 

p i n 

1 µm 0.5 µm 1 µm 

a. Write out the Device File that describes this device. 

b. Plot the bandgap, electron effective mass, and dielectric constant as a function of position. 

c.	 Plot the bandedge diagrams and quasi-Fermi levels as a function of position for an applied bias of V=0, 
V=+0.5 Volts and V=-2 Volts. 

d.	 On a log scale, plot the electron and hole density as a function of position for an applied bias of V=0, 
V=+0.5 Volts and V=-2 Volts. 

e.	 Plot the I-V for this diode. Use a the maximum forward bias that corresponds to current densities of 1 
kA/cm2 and a maximum reverse bias of V=-5 Volts. 

f.	 For a forward biased current of 1 kA/cm2, how much of the electron current that is injected into the 
GaAs from the n-type region recombines in the GaAs ? 
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MATLAB®* Supplement for Problem Set 1 

This document is intended as a MATLAB® tutorial for first time users and as a relevant example 
for more experienced MATLAB® users. 

Below is an example of a MATLAB® implementation of the Fermi-Dirac integral and its inverse. 
The Fermi-Dirac integral is numerically evaluated using the ‘quad8’ function.  Evaluating the 
inverse of the Fermi-Dirac integral is a bit tricky. This algorithm implements a search to look for 
the Fermi-level that corresponds to the appropriate integral. 

function fd = fermi(y,v)
% fd = fermi(y,v);

% 

% This is the integrand of the Fermi-Dirac integral from

% p. 416 of C&C.

% 

% see also FERMIDIRACINT.M 


% This is a simple example of a function in MATLAB. In the first line,

% function is the key word that lets matlab know that you are writing

% a function. The fd on the left hand side of the equal sign is

% the output argument, what is returned by the function. on the 

% right hand side of the equal sign is the function name, fermi, with

% the input arguments in parameters. Note how fd, y, and v are used

% in the function below. 

% 

% To call this function, type:

% >> blah = fermi(1,3)

% 

% blah will be equal to sqrt(1)./(1+exp(1-3)). 


fd = sqrt(y)./(1+exp(y-v)); 

% note the dot preceeding the divide. This indicates an 

% element by element division for the vectors y and v.

% 

% In general, a dot before an operator modifies it from a

% matrix operation to an element by element operation. 


* The MathWorks Inc. MATLAB, Simulink, Stateflow, Handle Graphics, and Real-
Time Workshop are registered trademarks, and TargetBox is a trademark of The
MathWorks, Inc 



function fdi = fermidiracint(v)
% fdi = fermidiracint(v);

% 

% This function returns the Fermi-Dirac integral of order

% 1/2 givein in p. 416 of C&C

% 

% see also FERMI.M 


% relative and absolute tolerance 


tol = [1e-3, 1e-4]; % pass [] to use defaults


%-----------------------------------------------------------------

% quad8 is some kind of numerical quadrature to approximate

% the integral. >>help quad8 OR >>type quad8 for more details

% 

% help is the most valuable matlab command.

% type lets you see what the toolbox is doing, another way to

% learn matlab tricks. 

%-----------------------------------------------------------------


warning off; % turns off the warnings 


fdi = zeros(size(v)); 	 % initializes fdi to a vector of zeros 
% the same size as v 

% step through each v and numerically integrate using a numerical
% quadrature. The first argument is the name of the function that
% returns the integrand. The second and third are the limits of 
% integration. The third and fourth are the tolerance and the number 
% of points for graphical output, the last is a parameter that is
% passed to fermi(integration_variable,parameter); 

for I = 1:length(v) 
fdi(I) = quad8('fermi',0,max(40,v(I)*2),[],[],v(I)); 
% index vectors and matricies with parentheses. 

end 
warning on; % turn on warnings. 

% you will get warnings about reaching the recursion level limit
% if you leave warnings on. This is due to the sharp slope of the
% Fermi-Dirac integrand near y=0. compare the result with trapz.
% To check that it is correct. 


