
6.S096 Lecture 5 – Object-Oriented C++
Abstraction, Inheritance, STL

Andre Kessler

Andre Kessler 6.S096 Lecture 5 – Object-Oriented C++ 1 / 16

Outline

1	 Assignment 2

Crash course in the STL

Inheritance

Pitfalls

2

3

4

Andre Kessler 6.S096 Lecture 5 – Object-Oriented C++	 2 / 16

Assignment 2

Assignment 2

Linked list library (list)
Writing linked list code that other programs can use
No memory leaks!

Minimum spanning tree (mst)
Using the STL
Implementing an algorithm
Writing fast C++

Rational numbers library (rational)
Overloading arithmetic functions
Edge cases
Exceptions

Andre Kessler 6.S096 Lecture 5 – Object-Oriented C++ 3 / 16

Crash course in the STL

Crash course in the STL

<vector>
Remember the Array class we were writing last time? A better version
already exists in C++, so we don’t need to write it ourselves!

#include <vector>
// In our code:
std::vector<int> intArray;
while(/* getting data */) {

intArray.push_back(data);
}
int tenthItem = intArray[9]; // like an array
// Automatically destroys data when done

The angle brackets < and > let us specialize this type: we can replace T
with any other type T, like std::vector<T>.

Andre Kessler 6.S096 Lecture 5 – Object-Oriented C++ 4 / 16

Crash course in the STL

Crash course in the STL

STL? What’s that?
STL stands for Standard Template Library. Containers and algorithms to
use on those containers, all with a common interface. Another vector:

#include <vector>
#include <string>
// In our code:
std::vector<std::string> stringList;
stringList.push_back("C99");
stringList.push_back("C++03");
stringList.push_back("C++11");
for(auto str : stringList) { // "range-for"

std::cout << str << "\n"
}

Andre Kessler 6.S096 Lecture 5 – Object-Oriented C++ 5 / 16

\n";

Inheritance

Some (BAD!) code that needs to be refactored

We’ve got a struct to hold some shape data for different ShapeTypes.

// BAD CODE!
enum ShapeType { CIRCLE = 0, SQUARE = 1,

RECTANGLE = 2, TRIANGLE = 3 };

// needs to be big enough to hold the shape
struct Shape {

ShapeType type;
double a, b, c, d;

};

And we want a function to compute the area, given a shape.

Andre Kessler 6.S096 Lecture 5 – Object-Oriented C++ 6 / 16

Inheritance

Some (BAD!) code that needs to be refactored

Without some good object-oriented practices, code like this can become a
tangled mess of switch or if/else statements.

// BAD CODE!
double area(const Shape &shape) {

switch(shape.type) {
case CIRCLE: return M_PI * shape.a * shape.a;
case SQUARE: return shape.a * shape.a;
case RECTANGLE: return shape.a * shape.b;
case TRIANGLE: return 0.5 * shape.a * shape.b;
default: std::cerr << "Error, invalid shape!\n"

}
return 0.0;

}

Andre Kessler 6.S096 Lecture 5 – Object-Oriented C++ 7 / 16

";\n

Inheritance

What’s so bad?

Any time we want to make a function that works
differently on different types of shapes, we need
this same switch statement.

Lots of code repetition.

The member variable names do not describe their
purpose.

Not extensible: when we add a new shape, we have
to modify every one of these functions.

Andre Kessler 6.S096 Lecture 5 – Object-Oriented C++ 8 / 16

Inheritance

Our refactoring: an abstract class

Let’s create an abstract class Shape. We do this by giving the class
some virtual functions; these are functions which child classes can
override.
Could have member variables or not (in this case, we won’t)
Pure virtual functions (the = 0).
Notice the destructor is virtual.

class Shape {
public:

virtual double area() const = 0; //pure virtual
virtual ~Shape() {}

};

Andre Kessler 6.S096 Lecture 5 – Object-Oriented C++ 9 / 16

Inheritance

Inheritance

class Shape {
public:

virtual double area() const = 0; //pure virtual
virtual ~Shape() {}

};
class Circle : public Shape {

double _radius;
public:

Circle(double theRadius) : _radius{theRadius} {}
~Circle() {}
inline double radius() const { return _radius; }
double area() const { return

_radius * _radius * M_PI; }
};

Andre Kessler 6.S096 Lecture 5 – Object-Oriented C++ 10 / 16

Inheritance

Closer look at the child class...

Syntax is class Derived : public Base

class Circle : public Shape {
double _radius;

public:
Circle(double theRadius) : _radius{theRadius} {}
~Circle() {}
inline double radius() const { return _radius; }
double area() const { return

_radius * _radius * M_PI; }
};

Andre Kessler 6.S096 Lecture 5 – Object-Oriented C++ 11 / 16

Pitfalls

Know the functions C++ automatically creates!

Looks like a pretty emtpy class, right?

class Empty{};

Andre Kessler 6.S096 Lecture 5 – Object-Oriented C++ 12 / 16

Pitfalls

Know the functions C++ automatically creates!

Looks like a pretty emtpy class, right? Wrong!

class Empty{
public:

Empty() { /*...*/ } // constructor
// copy constructor
Empty(const Empty &rhs) { /*...*/ }
// copy assignment
Empty& operator=(const Empty& rhs) { /*...*/ }
~Empty() { /*...*/ } // destructor

};

If we don’t want these functions, have to disallow by making them private
and indicating = delete!

Andre Kessler 6.S096 Lecture 5 – Object-Oriented C++ 13 / 16

Pitfalls

Examples

Some other tips from Scott Meyers:
Item 7: Declare destructors virtual in polymorphic classes.
Item 10: Have assignment operators return a reference to *this.
Item 12: Copy all parts of an object.
Item 22: Declare data members private
Item 32: Make sure public inheritance models “is-a”.

Read his book, Effective C++!

Andre Kessler 6.S096 Lecture 5 – Object-Oriented C++ 14 / 16

Pitfalls

Examples

Let’s see some examples...

Andre Kessler 6.S096 Lecture 5 – Object-Oriented C++ 15 / 16

Pitfalls

Wrap-up & Wednesday

Monday is a holiday!

Second assignment due Weds. at midnight

Class on Weds.

Design patterns and anti-patterns

Questions?

Office hours Mon, Tues in 26-142

Andre Kessler 6.S096 Lecture 5 – Object-Oriented C++ 16 / 16

MIT OpenCourseWare
http://ocw.mit.edu

��6����(IIHFWLYH�3URJUDPPLQJ�LQ�&�DQG�&��
,$3�����

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

	Assignment 2
	Crash course in the STL
	Inheritance
	Pitfalls

