
6.S096 Lecture 7 – Intro to Projects
Unit testing, third-party libraries, code review

Andre Kessler

Andre Kessler 6.S096 Lecture 7 – Intro to Projects 1 / 13

Best Practices

Final Project

Structure of a Large Project

Unit Testing

Code Reviews

Wrap-up

Outline

1

2

3

4

5

6

Andre Kessler 6.S096 Lecture 7 – Intro to Projects 2 / 13

Best Practices

Best Practices

If you haven’t already, look at our standards page.

General Important Points

Write in a clear and consistent coding style.

Code should be self-documenting.

Keep your headers clean.

Don’t expose your class’ private parts.

Use const wherever possible.

Write portable code.

Don’t leak memory!

Andre Kessler 6.S096 Lecture 7 – Intro to Projects 3 / 13

http://web.mit.edu/6.s096/www/standards.html

Final Project

Final Project

Groups of 2-4 people; 3 recommended

Writing an interactive n-body gravity simulation- details to come
tomorrow

External libraries: using OpenGL, gtest framework

Lots of room for hacking independently and getting cool additional
features!

Andre Kessler 6.S096 Lecture 7 – Intro to Projects 4 / 13

Structure of a Large Project

How are projects different?

We’ll have lots of programmers, a large amount of code, many

updates over time.

Need a revision control system. Examples: git, SVN, CVS, Mercurial

are some free ones.

We said many updates over time: lots of potential for bugs. Code

should be tested.

Need a unit testing framework. Examples: gtest, cppunit.

Still want to be able to build our code in one go (“make”).

May want to use an integrated development environment, or IDE.

Examples: Microsoft Visual Studio, Eclipse, XCode.

Andre Kessler 6.S096 Lecture 7 – Intro to Projects 5 / 13

Structure of a Large Project

Structure of a Large Project

|-­ build ...
| ‘-­ project |-- Makefile
|-­ include |-­ src
| ‘-­ project | |-- gcd.cpp
|-­ install | ‘-­ rational.cpp
| |-­ bin |-­ test
| |-­ include | |-- project-test.cpp
| |-­ lib | ‘-­ rationalTest.cpp
| ‘-­ test ‘-­ third_party
|-­ make ‘-­ gtest
| |-- all_head.mk
| |-- all_tail.mk
| |-- project.mk
| ‘-­ project-test.mk

Andre Kessler 6.S096 Lecture 7 – Intro to Projects 6 / 13

Structure of a Large Project

Separation of build and source

Have a clean build.
Since this is definitely under revision control, we want to keep our
directories free from clutter
Hence, all object (.o) files will go in the bin/ directory.
Third-party libraries live in their own directory third party/gtest
or whatever.
Headers for our project named “project” are deployed to the install
directory.

Be able to build in one step
We have an upper-level Makefile so that we can still just make our

project.

However, that’s been split up into more modular sub-makefiles

(make/*.mk).

Andre Kessler 6.S096 Lecture 7 – Intro to Projects 7 / 13

Unit Testing

Unit Testing and Test-Driven Development

Testing your source code, one function or “unit” of
code at a time.

Test-driven development: write the tests first and then write code
which makes the tests pass

Decide how you want the interface to work in general, write some
tests, and go develop the specifics.

Andre Kessler 6.S096 Lecture 7 – Intro to Projects 8 / 13

Unit Testing

gtest: the Google C++ Testing Framework

Highly cross-platform, available from here.

Runs your full suite of tests (potentially each time you compile)

Tests are very portable and reusable across multiple architectures

Powerful, but very few dependencies.

Example from their primer:

ASSERT_EQ(x.size(), y.size()) << "unequal length";

for (int i = 0; i < x.size(); ++i) {
EXPECT_EQ(x[i], y[i]) << "differ at index " << i;

}

Andre Kessler 6.S096 Lecture 7 – Intro to Projects 9 / 13

https://code.google.com/p/googletest/wiki/Primer

Code Reviews

Code Reviews

Why do code review?

Two pairs of eyes are better than one. Catch bugs early.

Forces someone to read it. If your code wasn’t readable, they’ll let

you know and help you improve it.

According to Steve McConnell in Code Complete:

In a software-maintenance organization, 55 percent of one-line

maintenance changes were in error before code reviews were

introduced. After reviews were introduced, only 2 percent of the

changes were in error. When all changes were considered, 95 percent

were correct the first time after reviews were introduced. Before

reviews were introduced, under 20 percent were correct the first time.

Andre Kessler 6.S096 Lecture 7 – Intro to Projects 10 / 13

Code Reviews

Tips for effective code review

Most important features for the code: correctness, maintainability,

reliability, and performance. Consistent style is good, but those other

points come first!

Keep your review short and to the point.

Check the code for compliance with the class coding standards.

Take the time for a proper review, but don’t spend much more than

an hour; additionally, don’t review much more than about 200 lines of

code at once.

Andre Kessler 6.S096 Lecture 7 – Intro to Projects 11 / 13

Code Reviews

Examples

Let’s see some examples...

Pimpl idom...

Andre Kessler 6.S096 Lecture 7 – Intro to Projects 12 / 13

Wrap-up

Wrap-up & Monday

Third assignment due Saturday at midnight.

Final project to be released Saturday

Class on Mon.

Concerns of large projects

Questions?
Office hours immediately after class today

Office hours Mon, Tues

Andre Kessler 6.S096 Lecture 7 – Intro to Projects 13 / 13

pgand4
Rectangle

MIT OpenCourseWare
http://ocw.mit.edu

6.S096 Effective Programming in C and C++
IAP 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

	Best Practices
	Unit Testing
	Wrap-up

