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Uncertainty

• Practically any CBA requires consideration of 
uncertainty.

• Most methodologies in use are ad hoc, due to 
the intrinsic difficulty of the generalized 
problem.
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Methods

1. Scenario analysis

2. Adjustments of interest rates

3. Decision Theory

4. Simplified probabilistic models
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Scenario Analysis

• Preparation and analysis of scenarios:
-- “Optimistic” or “most favorable estimate”
-- “Most likely” or “best estimate” or “fair 

estimate”
-- “Pessimistic” or “least favorable estimate”

• Interpretation is difficult without assignment of 
probabilities to scenarios.

• Benefit: Brings additional information into the 
process.
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Example

• A new machine is to be purchased for producing 
units in a new manner.

Pessim. Fair Optim.
Annual number of units: 900 1,000 1,100
Savings per unit: $50 55 60
Operating costs: $2,000   1,600    1,200
etc.

PW: -$49,000  22,000   120,000

• What are we to do with such information?
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Developing Scenarios

• For each element in the problem, e.g., interest rate 
and costs, define the three values.

• We really don’t know how conservative 
(pessimistic) the final answer is.

• People are bad processors of information.
• Point estimates tend to cluster around the median 

value.  Possibility of displacement bias.
• Extremes greater than the 75th or smaller than the 

25th percentile are difficult to imagine.
• Overconfidence.
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Forecasting Oil Prices

D. Draper, “Assessment and propagation of model uncertainty,” Journal
of the Royal Statist. Soc., B (1995) 45-97.

• In 1980, 43 economists and energy experts forecast 
the price of oil from 1981 to 2020 to aid in policy 
planning.

• They used 10 leading econometric models under 
each of 12 scenarios embodying a variety of 
assumptions about inputs, such as supply, 
demand, and growth rates.
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The Plausible Scenario

• One scenario was termed as the “plausible median 
case.” It represented “the general trends to be 
expected.”

• The 10 models were applied to the plausible 
scenario.

• Results for 1986:
Actual price:  $13
Range of predictions:  $27 to $ 51.
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High Interest Rates

• Justify choice of alternatives using a high interest 
rate, e.g., 30%.

• Example
Total annual income: $55,000
Capital cost: $80,000
Annual capital recovery with return:  
$80,000 (A/P, 30%, 6yrs) = $30,272
Annual operating cost $28,600
Net annual profit:  55,000 – (30,272 + 28,600) =

= -$3,872
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Example (cont’d)

• The high rate of 30% is intended to cover 
uncertainty.

• If the annual income were $60,000, then the net 
annual profit would be 60,000 - (30,272 + 28,600) =
= $1,128 and the venture would be accepted.

• A high interest rate does not guarantee that all 
uncertainties are accounted for.  Its choice is 
arbitrary.
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Decision Theory: Manufacturing Example

• Decision: To continue producing old 
product (O) or convert to a new product (N).

The payoffs depend on the market 
conditions:

s: strong market for the new product
w: weak market for the new product



CBA 4.  Including Uncertainty 12

Manufacturing Example Payoffs

· Earnings (payoffs):

L1: $15,000/yr, old product,  
L2: $30,000/yr, new product and the market is strong, 
L3:   -$10,000/yr, new product and the market is weak

• Demand and Probabilities:
Period 1 (5 yrs) Period 2 (5 yrs) Probabilities

s1 s2 0.4 = P(s1s2)
s1 w2 0.4 = P(s1w2)
w1 w2 0.2 = P(w1w2)

P(s1) = P(s1s2) + P(s1w2) = 0.8;   P(w1) = 0.2;   P(s2/s1) = 0.5;   P(w2/w1) = 1.0
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Decision Tree

$96.94K

N

-$81.09K

O

Decision 
Options

States of Nature PW of Payoffs

$243.26K

$121.61K

P1 P2

s1

s2

w2

w1 w2
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Calculation of the Payoffs
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Calculation of the EMV

Old Product

New Product
EMVN = 243.26x0.4 + 96.94x0.4 -81.09x0.2 = 119.86K

Decision
Stay with the old product?
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Calculation using Utilities
Let the utility of payoffs be  U(x) = 1.18 ln(x+5) - 1.29
-2 ≤ x ≤ 2     (x in $M) [U(2) = 1, U(-2)= 0]
U(243.26) = 0.665;  U(121.61) = 0.637;  U(96.94) = 0.632;  
U(-81.09) = 0.590

Old Product
EU(O) = 0.637

New Product
EU(N) = 0.665x0.4 + 0.632x0.4 + 0.590x0.2 = 0.6368

Decision
Stay with the old product?
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Probabilistic Models

• We have:
(1) 

where are the net benefits in
year j.
• All Xj are r.v.’s,  ⇒ PW[X(T)] is a r.v. 
• Note that (1) is of the form:
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Analysis

• Computing the probability density function (pdf) 
of PW is usually difficult in practice.

• Try to compute the quantities E[PW], the 
expected value of PW, 

and i.e., the variance of PW.2
PWσ
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Fundamental Relationships from 
Probability Theory (1)

• Let Z = aW+b
(Z and W are r.v.’s, a and b constants)

⇒ E[Z] = a E[W] + b

⇒ 2
W

22
Z a σ=σ
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Fundamental Relationships from 
Probability Theory (2)

• Let  

(W1 , W2 : independent r.v.’s)

⇒

⇒

Note:  Extends to any number of mutually 
independent r.v.’s.
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Fundamental Relationships from 
Probability Theory (3)

• Let  

⇒

• If W1 and W2 are normal, then Z is also normal.

• We often assume that Z is normal even if W1 and 
W2 are not.
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Example: Reliability Physics

• (RPRA 3, slide 30) A capacitor is placed across a 
power source.  Assume that surge voltages occur on 
the line at a rate of one per month and they are 
normally distributed with a mean value of 100 volts 
and a standard deviation of 15 volts.  The 
breakdown voltage of the capacitor is 130 volts.

• Suppose that the breakdown voltage is also normally 
distributed with standard deviation of 15 volts.



CBA 4.  Including Uncertainty 23

Example (2)

• The capacitor fails when the surge voltage, S, is 
greater than the capacity, C.

• S: rv with E[S] = 100,   σS = 15 volts
• C: rv with E[C] = 130,  σC = 15 volts
• Define a new rv D      C – S = aC + bS
• Then,  E[D] = 130 – 100 = 30 volts

and   

≡

volts21.212
S

2
CD

=+= σσσ
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Example (3)

• D is also normally distributed, therefore
• Pd/sv(D < 0) = P( Z < -(30/21.21)) = P(Z < - 1.41) = 

= P(Z > 1.41) = 0.5 – 0.42 = 0.08
• RPRA 3, page 31, shows that Pd/sv = conditional 

probability of damage given a surge voltage   
= P(surge voltage>130 volts/surge voltage)  

08.00228.09772.01)2Z(P1

)2Z(P)
15

100130Z(P

<=−=<−=

=>=
−

>=

The uncertainty in the breakdown voltage increased the 
failure probability.
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Assuming Independence of Xj

• Xj ( j = 0, 1,........,T) are mutually independent 
r.v.’s with known            and 

• Note: Gaussian approximation for pdf of Y
may work well in this case.
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Example: Project A

T = 3 yrs.; i = 8%;   Initial Cost = $10K

 Net Benefits 
Probability, p t=1 t=2 t=3 

    
0.10 $3K $3K $3K 

    
0.25 $4K $4K $4K 

    
0.30 $5K $5K $5K 

    
0.25 $6K $6K $6K 

    
0.10 $7K $7K $7K 
1.00    
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Example (2)

• Denote with X1, X2, and X3, the net benefits of 
A in years 1, 2 and 3, respectively.  

• Note: Net benefits, X1, X2, and X3, do not have 
to be identically distributed or symmetric or 
discrete; these choices are made just to keep the 
example simple. 

• Denote with Y the present worth of A, PW(A).  
Then:

PWInd(A) = YInd = -10K + X1/(1.08) + X2/(1.08)2

+X3/(1.08)3
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Observations

• Y is a random variable (takes more than one value 
with different probabilities for any given 
implementation of project A)  

• Value of Y will be determined by the values of the 
combination of X1, X2, and X3 that will actually 
materialize

• Corresponding a priori probability of any value 
of Y is equal to probability of that particular 
combination of X1, X2 and X3.
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Expectation and Variance of Annual Net 
Benefits

• It is easy to determine the expected value and variance of each of X1, 
X2, and X3, separately:

E[X1] = 0.1x3+0.25x4+0.3x5 +0.25x6+0.1x7 = $5,000

(Similarly, we have E[X2] = $5K and E[X3] = $5K. )

= 0.1x(3-5)2 + 0.25x(4-5)2 + 0.3x(5-5)2 + 0.25x(6-5)2 + 
+ 0.1x(7-5)2 = 1,300,000     (1,140)2

or,                  $1,140 = =

2
1Xσ

1Xσ ≈ 2Xσ
3Xσ

≈
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Independence: Calculations

• Assume that the net benefits obtained from Project A in years 1,
2 and 3 are determined independently of one another.

• This means the probability of the combination {X1 = 3, X2 = 6, 
X3  = 4} is equal to  

P(X1 = 3, X2 = 6, X3  = 4) = P(X1 =3)·P(X2 = 6)·P(X3 =4) = 
= (0.1)(0.25)(0.25) = 0.00625

that is, with probability 0.00625, the r.v. Y, i.e., the PW of Project 
A, will take on the value

PWInd = YInd = -10K + 3K/(1.08) + 6K/(1.08)2 + 4K/(1.08)3

$1,097.14
≈
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Independence: Calculations (2)

• Note that Y can take on a total of 125 (= 5·5·5) different values  
of independent outcomes in years 1, 2 and 3.

• Using the expressions on slide 21 we get

E[YInd]= -10K+E[X1]/(1.08)+E[X2]/(1.08)2+E[X3]/(1.08)3 = 
= -10K + (5K)·[1/1.08 + 1/(1.08)2 + 1/(1.08)3] 
= -10K+ (5K)·(P/A, 0.08, 3)    -10K + (5K)(2.5771)      $2,885

=            [1/1.08]2+             [1/(1.08)2]2+               [1/(1.08)3]2

= (1,140)2·[1/(1.08)2 + 1/(1.08)4 + + 1/(1.08)6] = 
= (1,140)2·(2.2225),  or,             = (1,140)·(2.2225)1/2 $1,700

≈

2
Ind,Yσ

2
1Xσ 2

2Xσ 2
3Xσ

Ind,Yσ ≈

≈
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Conclusion

• Project A will, "on average," have a net 
present value equal to about $2,885 and a 
standard deviation of approximately 
$1,700 around that average.
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What can we do with this information?

Alternative E[Y] = E[PW] σY

1 20 15

2 5 7

3 15 12

4 17 16
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Possible Decision Criteria

• Choose the alternative with the highest mean 
value (A1).

• Note how close A4 is and how large the standard 
deviations are.  Depending on the uncertainties, 
A1 and A4 may be indistinguishable.

• Minimize the probability of loss.
• Assume normal distributions and find P(PW < 0).
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Probability of Loss

• A1: P(PW < 0) = P(Z < -(20/15)) = P(Z < -1.33) =
= 0.09 “best” alternative

• A2: P(PW < 0) = P(Z < -(5/7)) = P(Z < -0.71) =
= 0.24

• A3: P(PW < 0) = P(Z < -(15/12)) = P(Z < -1.25) =
= 0.10

• A4: P(PW < 0) = P(Z < -(17/16)) = P(Z < -1.06) =
= 0.14
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Probability of Loss for Project A

• PInd(PWInd < 0) = P(Z < -(2885/1700)) = P(Z < -1.7) 
= 0.04

• The fundamental assumption is that of 
independence of the annual benefits.
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Complete Dependence of Xj

• Once the net benefits, X1,  for year 1 are known, we shall 
also know exactly the net benefits for years 2 and 3.

 Net Benefits 
Probability, p t=1 t=2 t=3 

    
0.10 $3K $3K $3K 

    
0.25 $4K $4K $4K 

    
0.30 $5K $5K $5K 

    
0.25 $6K $6K $6K 

    
0.10 $7K $7K $7K 
1.00    
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Mean and Variance (Dependence)

• PWDep (A) = YDep = -10K + X[1/(1.08) + 
1/(1.08)2 +1/(1.08)3] = -10K + X(P/A, 8, 3)

• From slide 15 we get
• E[YDep] = -10K + E[X]·(P/A, 8, 3)  $2,885, as 

before

=        [(P/A, 8, 3)]2 =(1,140)2·[2.5771]2

or          
= (1,140)·(2.5771)       $2,938

≈

2
Dep,Yσ
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Comparison

• In both the independent and dependent cases the mean 
values are the same ($2,885).

• The standard deviation in the dependent case ($2,938) is 
73% larger than that of the independent case ($1,700).

• PDep(PW < 0) = P(Z < - (2885/2938)) = P(Z < -0.98) = 0.16
• Compare with PInd(PW < 0) = 0.04 (slide 32)
• These two cases are considered as bounding the problem.
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