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Quantitative genomics
Module 1: Evolutionary and population
genetics
Lecture 2: the coalescent & what to do
with it

Professor Robert C. Berwick

Topics for this module

1. The basic forces of evolution; neutral evolution and drift

2. Computing ‘gene geneaologies’ forwards and backwards;
the coalescent; natural selection and its discontents

3. The evolution of nucleotides and phylogenetic analysis

4.  Measuring selection: from classical methods to modern
statistical inference techniques

But first, a few more words about drift...




The key to evolutionary thinking: follow the

money;
money= variation

o We saw how the Fisher-Wright model lets us keep
track of variation (= differences, heterozygosity) going
forward in time, alternatively, similarity,
homozyogosity)

e Second we can add in the drip, drip of mutations and
see what the account ledger balance says

Last Time: The Wright-Fisher model &
changes in expected variability
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We get a binomial tree that depends on frequency, p, and total populatlon 51ze N.
IN! Py,
—» Binomial sampling  Pr{jli}= AeN-] ( |( N }
What is the pr that a particular allele has at 1east 1 copy in
the next generation?
Well, what is the pr of not picking an allele on one draw?
Ans: 1-(1/2N). There are 2N draws (why?). So, pr of not
picking for this many draws is [1-(1/2N)]?V = ¢! for large N

Let’s explore the consequences...




Adding mutations — the mutation-drift balance

Mutation gain 2Nu

Loss at rate 1/(2N)
AH =0 at equillibrium, so

4 Nu
1+ 4Nu

H=

4 Nu = 0 basic level of variation

The forces of evolution...

4
E[H]=— Nt
1+4N,u

OBeOe@eo0

Goal: understand relation between forces: u, 1/N
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noise - 5 N




Mutation vs. drift: the key number is
ANp vs. 1

Ny > 1, diversity increases
heterozygosity maintained around 0.5

Gain heterozygosity — Population “large” wrt
variance stays high genetic drift
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“Follow the variation”

4 Nu 4Nu =0

Heterozygosity—= H =
YEORILY 1+4Nu

Homozygosity (identity)= 1-H =G= 1/6

These are the key measures of how ‘variant’ two
genes (loci), sequences, etc. are
What can we learn about their distributions?
How can we estimate them from data?
How can we use them to test hypotheses about
evolution?




Sample

The F measure already
tells us something about expected variation

G=1/6 = 1/4Nu= measure that 2 —

sequences (or alleles, or...) differ in exactly =

2ero ways g r——

Compute © = nucleotide diversity = /

# of diffs in 2 sequences (informally) -
CETITETED D

What is E[r]? cmrmam | C

We shall see that E[n]= 4Nu ie, 6

But why this pattern of variation?
Drift? Mutation? Selection? Migration?

“Follow the variation”: some famous data about
individual variation in Drosophila melanogaster (Marty Kreitman)

Table removed due to copyright reasons.

Kreitman 1983 original data set for melanogaster Adh sequences
Kreitman,M (1983): Nucleotide polymorphism at the alcohol
#ehydrogenase locus of Drosophila melanogaster.

Nature 304, 412-417.




Kreitman data

11 alleles; 14 sites polymorphic

1.8 every 100 sites segregating

(typical for Drosophila)

Variation in 13 out of 14 silent; position
#578 is a replacement polymorphism

Q: why this pattern of variation?

Q: is 11 alleles a big enough sample?
(The answer is Yes, actually, as we shall
see)




The key to the bookkeeping of evolution is:
Follow the money — keeping track of
variation

Because this is a binomial draw with parameters p, 2N, the mean
of this distribution (the expected # of A, alleles drawn) is just
2Np, i.e., mean frequency is p

And its variance is 2Np(1-p)

What abour the mean and variance not of the # of alleles, but of
the frequency itself, p’ ?

Elp]= E[X]/2N = 2Np/2N= p

The variance of p' goes down as the population size increases, as
we would expect:
Var[p' |= Var[X]?/4N’=
2Np(1-p)/AN—
p(1-p)/2N

Key point: drift is important when the variance is large

Second consequence: new mutations, if neutral...

What is the probability that a particular allele has at least 1
copy in the next generation? In other words: that a brand-new
mutation survives?

Well, what is the pr of not picking an allele on one draw?
Ans: 1-(1/2N). There are 2N draws (why?).
So, pr of not picking for this many draws is:

[1-(1/2N)]?Y = e for large N

So: probability of a new mutation being lost simply
due to ‘Mendelian bad luck’ is 1/e or 0.3679

Why doesn’t population size N matter?
Answer: it’s irrelevant to the # of offspring produced initially
by the new gene




Climb every mountain? Some
surprising results

o The power of selection: what is the fixation probability for a new mutation?

« If no selection, the pr of loss in a single generation is 1/e or 0.3679

« In particular: suppose new mutation has 1% selection advantage as heterozygote — this

is a huge difference
o Yet this will have only a 2% chance of ultimate fixation, starting from 1 copy (in a
finite population a Poisson # of offspring, mean 1+s/2, the Pr of extinction in a single

generation is el(1-s/2), e.g., 0.3642 for s= 0.01)
Specifically, to be 99% certain a new mutation will fix, for s= 0.001, we need about

4605 allele copies (independent of population size N !!)
Also very possible for a deleterious mutation to fix, if 2Ns is close to 1
Why? Intuition: look at the shape of the selection curve — flat at the start, strongest

at the middle
¢ To understand this, we’ll have to dig into how variation changes from generation to

generation, in finite populations

The fate of selected mutations
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Fixation probability of a (neutral) allele
is proportional to its initial frequency

All variation is ultimately lost, so eventually 1 allele is
ancestor of all alleles

There are 2N alleles

So the chance that any one of them is ancestor of all is
1/2N

If there are § copies, the ultimate chance of fixation
(removal of all variation) is §/2N

(Simple argument because all alleles are equivalent — there
is no natural selection)

Population genetic inference

Evolutionary parameters Population

Sample
Stochastic Stochastic
Evolutionary Sampling
process @ process
. @
Selection LY (C—
@ _0o :T\-_,_ ATGCATGGGCTATTGGACCT
R @ @—. - TATTGCACCT
Mutation .

ATGCATGGGCAATTGCACCT
ATGCATGGGCAATTGGACCT
ATGGATGGGCTATTGCACCT

Genetic drift
Recombination

Migration

I

Inference




What are we missing? History.
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Figure 1 | The source of genetic variation. Polymorphism at a particular site results from

mutatiens (shown here as G—=T) along branches of the genealogical tree, which connects sampled

copies of the site to their most recent common ancestor (MRCA}.
The 3 mutations are not independent — increasing sample
size n does not have the usual effect of improving accuracy

of estimates! (In fact, it’s only marginally effective)

zi+(1—i)G—2uG
2N 2N
H=1-G, soH'z(l—inJrzua—H)
2N
1
AH ~———H +2u(1- H)
2N

AH =0 at equillibrium, so

Heterozygosity= H = _4Nu
(AKA gene diversity) 1+ 4 Nu

4 Nu = 0 basic level of variation
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The coalescent:
The cause of the decline in variation is
that all lineages eventually coalesce...

Common ancestor

Time T(2)

Sequence 1 Sequence 2

Notation: T,= time to collapse of 7 genes, sequences,...

This stochastic process is called the coalescent
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Coalescent can be used for...

... simulation
.. hypothesis testing
... estimation

Random genealogical trees. The trees were generated using the same model — the
standard coalescent for sample of size ten. Therefore, the variation among the trees reflects chance
alone.

12



Looking backwards: the coalescent

A coalescent is the lineage of alleles in a sample traced
backward in time to their common ancestor allele

More useful for inference: we see a certain pattern of data,

want to understand the processes that produced
that data

NB, we cannot actually know the coalescent (but who
cares?)

Provides intuition on patterns of variation

Provides analytical solutions

Key: We need only model genealogy of samples: we don’t
need to worry about parts of population that did not leave
descendants (as long as mutations are neutral)

13



What is time to most recent common ancestor?
(MRCA)?

MRCA

Time T(2)

Sequence 1 Sequence 2

Notation: T,= time to collapse of 7 genes, sequences,...

In other words...

O A
O On average,
T :/E depth 2N before
il collapse to 1
Vi T |
g 08 ancestor
ohoonoony

Can we prove this and use it?

If it’s true, then we can use this to get
expected sequence diversity, estimates of #
of segregating sites, heterozygosity, and
much, much more...

14



Pr that two genes differ (ie, H as before...)

B P(mutation) _ 2u _ 4Nu
P(mutation)+P(coalescence) 2+ 1 4Nu+1
2N
Q: where did 2u come from?
MRCA
For example, if u= 109, then in a population of A |
105, mean heterozygosity expected is 0.8 Time TE)
Sequence 1 Sequence 2

This is a lot easier to compute than before!!!

We superimpose (neutral) mutations on

top of a ‘stochastic’ genealogy tree

Genealogy DNA sequences
S e

e e
E[n] =2XuXE[T,zc,]

=4N,u
This product is our 0
Can we estimate it?

Note that each mutation in a coalescent lineage produces a
distinct segregating site (Why?)

Why can we superimpose these 2 stochastic effects?
Because mutations don’t affect reproduction (population size)

15



Basic idea

o More parents, slower rate to coalesce
o Neutral mutations don’t affect
reproduction (V) so can be
superimposed afterwards on the gene
tree

Now we can get the basic ‘infinite site’ result
for expected # diffs in DNA seqs:

* Mutations occur randomly at a rate proportional to the product of the
time to coalescence and the mutation rate

Genealogy Mutations DNA sequences

N 2 ] .

* Expected number of differences between a pair of sequences

E[m]=2XuXE[T,;z4]
=4Nu

* The product 4Nu is so important in population genetics, it is usually
written as a single parameter

68 =4Nu
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Expected time to coalescence

~ O Probability from same parent = 1

Nl O (coalescence) 2N
O —0 Probability from different parents =1- 1
2N
O—0
Probability of coal : (i-Ll)L
robability of coalescence ¢ generations ago °N ) 2N
P
1 Not coalesced for \
N first 1 generations ~ Coalesce in next
generation

63% of outcomes
have Tz, <2N

Using the coalescent as a ‘history model,’
expectations can be derived either in a discrete
time model (Fisher-Wright) or in a continuous

time model

The discrete model yields a ‘geometric’ probability
distribution

The continuous time model yields an ‘exponential’
probability distribution of ‘waiting times’

until each coalescence

17



An example coalescent for four alleles

_ # brapches
A 0 T4
4 —
T3
N t2 9 _| T2
1 —
— | | I
' t R A

Generation time ¢, measured backwards

Total time in coalescent T, = 4t, + 3(t,—t)) + 2(t4—1t,)=
4T, + 3T+ 2T,

# of expected mutations is uT,

What is the expected value of T?

Discrete time argument to find
expected coalescent time, for n alleles

Allele 1 has ancestor in 1st ancestral generation
Allele 2 will be different from 1 with probability
1-1/2N=(2N-1)/2N

Allele 3 will be different from first 2, assuming alleles 1 and
2 are distinct, with probability:

(2N-2)/2N
So total probability that the first three alleles do not share
an ancestor is:

(2N-1)/2N x (2N-2)/2N
Probability all n alleles do not share an ancestor (no
coalescence) is (dropping N2 and higher terms):
n—1 1 2 n—1

~]———= ..
2N) 2N 2N 2N

1 2
(1= =501
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1 2 n—1
Pr no coalescence =1—————---
2N 2N 2N
Pr coalescence in any particular generation
1424+ (-1 _n(n-1)

2N 4N

9

So: Time to 1st coalescence is geometrically distributed
with pr success of n(n—1)/4N

Mean of geometric distribution, is this reciprocal of success:

E[T = 4N/n(n-1)
So,

E[T,)= 4N/2 = 2N

E[T]= 4N/i(i-1)

(coalescence time from 7 alleles to i-1)

Note: we do not really care about the trees — they are a ‘nuisance’ parameter

Here’s another way to look at it: when there are 4 alleles, we have
to pick 2 of them to ‘coalesce’ or merge... so there are 4 choose 2
ways of doing this, out of 2N possible alleles. This gives the Pr of

Coalescent event, as follows.
The time +n +ha navt (nalacrant Buvant ic +ha raninracal of fhic

numbx So:

Probability of Coalescent Event

P@4)=~ [;J /2N

Time to Next Coalescent Event

r@y~2n/|*
=~ )
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Note typical shape and amount of time at tips of tree!

2N S
(3 :
2N
_) 3
Shorter waiting time because only 3

choose 2 genes/sequences could
‘collide’

2_N _ 2N
D,
o

Longer waiting time because only 2
genes/sequences left to ‘collide’

Rescaling time in terms of generational units

2N=1 time unit 2N




Rescaling time in terms of generational units

t

1/3 clock tick « o

A

2N=1 clock tick
clock tic « L

o

-

Now we can actually get some results...!

Total time in all branches of a coalescent is:

T. = Zsz ills just the # of ‘mergers , ie
=y ess than # of alleles at tips

So expected Total time in all branches is:

n n 1
E[T.1= Y E[T,]=4NY —
i=2 imi—1
Expected # segregating sites is neutral mutation rate, u
times the expected time in coalescent, therefore:

no]
E[S,1=uE[T,1=60) —
il —1
~ Sn
0=—77 1
I+ —+—+-+——
2 3 n—1
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Application to our example coalescent for four alleles

A

_ # branches
0 ) T,
T3
— t2 9 _| T2
1 —
l | |
' — 5 1 I
nGen(iration time t,l measgred backw%mrds
E[T,1=4N) —
ini—1

Total time T, = 4N(1+1/2+1/3)=44N/6

# of expected mutations is u7, or 6(11/6) or
1.83 0 in a sample of 4 alleles, which is also the
expected # of segregating sites

Application to Kreitman SNP data

# segregating sites: 14
Sample size: n=11

S 11
= T n = =4.78 (4 Nu) for locus
I+t 293
2 3 n—1

D)

0 for nucleotide site= ﬂ =0.0062
768

What about sample size question?

Well, note: - . 1
E[S,]= 92.—1, and Y - = In(n),
i=2 1~ i=1

so # segregating sites increases with log of sample size

22



Another estimator for theta

Use E[n], # pairwise differences between 2 sequences (In a
sample of size n, there are n(n—1) pairwise comparisons.)

This is 2uE[#], where E[{] is mean time back to common
ancestor of a random pair of alleles, i.e., 2N, so E[n]=6

Let’s apply this to an actual example, to see how © and 0
might be used...

Summary statistics

* Good properties of summary statistics
— Include most (all) information in the data
— Different statistics should use different information

— Expectations and variances should have simple relationship to
model parameters

Statistic Symbol Expectation
Average pairwise diversity =k 2.7y 9
i n—l
Number of segregating sites S 6y 1/i
i=l

n-1
Number of haplotypes K 921/(1' +6)

i=0

(no recombination)
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Example — control region of human mtDNA

Jorde et al (ref) published sequence data from the control region of human mitochondrial DNA. The
example described here uses 430 nucleotide positions from HVSI (the first hypervariable region).
Jorde et al sequenced DNAs from all three major human racial groups, but this example will deal
only with the 77 Asian and 72 African sequences. In these data:

Asian  African
S 82 63
Yty 4915  4.847
s (per sequence) 16.685 12.998
w (per sequence)  6.231  9.208

To compare statistics referring to sequences of different lengths, it is often convenient to divide
by the number of sites, which produces:
Asian  African
85 (per site) 0.039  0.030
w (per site ) 0.014  0.021

The key question (as usual): Why the
differences between these two supposedly
equivalent estimates??

7?7 Sampling error??

7?7 Natural selection?? In fact, we can use the difference
between these estimators to test for this (Tajima’s D)

7?7 Variation in population size/demographics?? We've
assumed constant N. Need to incorporate changing N,
migration, etc.

7?7 Failure of mutation model?? We’ve assumed
mutation never strikes the same nt position twice

24



Q: How do we get sampling error? A: coalescent simulation

a

How you do a coalescent simulation

Whenn=4

Probability of Coalescent Event

P@4)=~ (;J /2N

Time to Next Coalescent Event

r@y~2n/|*
=~ )

Sample time from exponential distribution

Pick two sequences at random to coalesce
[ ] | ] ] | ]
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Now we could use this spectrum to test our hypotheses
about the model assumptions we made

Frequency Spectrum

Constant size population
Exponentially growing population

Most variants are rare
For n = 100, ~44% of variants occur < 5/100.
For n =10, ~35% of variants observed once.

Deviations from Neutral Spectrum

When would you expect deviations from
the spectra we described?

What would you expect for ...
A rapidly growing population?
A population whose size is decreasing?

Why?

26



Intuition behind the continuous time model:

life-span of a cup
Intuition: if pr breaking is h per day, and expected life-span
is T days; show that T'is 1/h (= 1/2N)

Same as ‘coalesence’ between 2 genes

Cup either breaks 1st day w/ pr h or doesn’t with pr 1-5;
gene either coalesces or doesn’t. If it breaks 1st day, mean
life-span is 1

For surviving cups, life-span doesn’t depend on how old it is,
so if a cup has already lived a day, expected life-span is now
1+T. So:

T=h
+ (1-h)(1+T)=1/h

27



A bit more formally...

2N
1

Py=1-—

NC 2N
P, for t generations: (P,.) = (1 — th

NC g - Wye N
P, for ¢t generations and then coalescing in 7 +1:
(1 L)’ 1

2N ) 2N

Continuous time

If 2N large, > 100, use Taylor series expansion for e :
v~ (1- 1
e 72N ~(1 A N) SO

N

P C,z+1= 2N

exponential distribution for large ¢,

so P[x]= %-e‘m with mean b, variance b*

28



Sum all of these expectation bars...

()" H
() .
// 1
2N Zk 2 k)
2
2N 1
2N Zi=2 (1)
2
2
=4N Zz 2 i(i—1)
Expected time to
coalescence of all alleles=
AN2TH
9 Coalescent diagram for all allele copies in a population. ~ 4N

Summary: the coalescent models the geneology of a
sample of n individuals as a random bifurcating tree
The n-1 coalescent times T(n), T(n-1), ..., T(1) are
mutually independent, exponentially distributed random
variables

Rate of coalescence for two lineages is (scaled) at 1
Total rate, for k lineages is ‘k choose 2’

Basic references:

[1] Richard R. Hudson. Gene genealogies and the coalescent process. In Douglas Futuyma and
Janis Antonovics, editors, Ozford Surveys in Evolutionary Biology, volume 7, pages 1-44. Oxford
University Press, Oxford, 1990.

[2] J. F. C. Kingman. The coalescent. Stochastic Processes and their Applications, 13:235-248,
1982.
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Summary equations
Coalescence Times (in 2N units)

7
E(T)= 1/(2]

Total Length (in 2N units)
n-1 2
E(T,,) =Z;
i=1

Number of Mutations
n—1 n-1
E(S)=4Nu) 1/i=60>1/i
i=1 i=1

Extensions

o Add migration
» Population size fluxes (‘bottlenecks’)
» Estimation methods — based on likelihoods

30



Let’s deal with population size issue:

effective population size

Suppose population size fluctuates. For instance, in one
generation, population size is N, with probability r, the next
it is N, with probability 1-r

Can we patch up the formula?

General answer: Yes, we replace N with N, — the effective

population size

Let’s see what this means in flutating population size case

31



* Levels of polymorphism vary less between species than the census
population size

Diversity

Census N
* The rate of genetic drift varies due to

— Inbreeding, skewed sex ratios, fluctuating population size, variation
in family size

* Many biologically realistic complications can be modelled by a
coalescent process with a smaller EFFECTIVE population size

N —>N, E[r]=4N,u 6=4N,u

Effective population size must be used to
‘patch’ the Wright-Fisher model

Variance for N, is p(1-p)/2N, with probability r
Variance for N, is p(1-p)/2N, with probability 1-r
Average these 2 populations together, to get mean
variance, ‘solve’ for N,

r 1-r
Var[p'l= p(1-p)| —+ or
[p'T=p( p)(le 2N2j

1
N, =

ri +(1- r)L

Nl N2
i.e., the harmonic mean of the population sizes
(the reciprocal of the average of the

reciprocals)
Always smaller than the mean

Much more sensitive to small numbers
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Effective population size &
bottlenecks

Example: if population size is 1000 w/ pr 0.9 and 100 w/ pr
0.1, arithmetic mean is 901, but the harmonic mean is (0.9 x
1/1000 + 0.1 x 1/10)' = 91.4, an order of magnitude less!

Thus, if we have a population (like humans, cheetahs) going
through a ‘squeeze’, this changes the population sizes, hence 0

Suppose we have an arbitrary distribution of offspring numbers?

Fluctuating population size

140

120 I
I::: \/\III- /\/‘| .f\ : 'ﬁ'.l /l‘l I[\ Arithmetic mean
f.:i II\/\/ ‘ I)ll IIII V\/ v Harmonic mean

I 1
P N,

e Suppose population sizes: 11, 21, 1000, 21, 4000, 45, 6000, 12

o Arithmetic Mean (114-214-10004-21+40004-45-+6000+12)/8 = 1389

e Harmonic Mean = 27

e Harmonic Mean is smaller (small values have more important effects!)
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Different #s males and females

— N
A Ny=5
0% | Males N = l'le
.k i
05 Females 4NmN;'
0.4 1 Na: = :
) N,+N,
I I [ N
0 4 . - —_ 1 = —_—
3 [ -5

Changing population sizes: the effective

population size, N,

Varying offspring #, breeding success,
overlapping generations...

O — ,
o - Pr{2 alleles from same parent}
D
2 : 2 ki (k-1
e <re 2N 2N - l
( AQ
( ‘o _ S :
o 5N If population size constant
: 2
N
= N,=—;
O}
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Where’s Darwin??77?
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