
 FG definition, place in tetralogy

 Review heritable primary functional elements in the genome and “epigenome”. Central dogma 

– 1-way transfer of transcriptome info.
 Survey 2 primary scalable transcriptome profiling principles (technologies): sequencing 

(SAGE), nucleotide complementation (microarrays). Main idea: A small subset of nucleotides 

uniquely represents each RNA species / transcript
 Transcriptome profiling study assumptions, caveats

 Biological system / state of interest engages transcriptome machinery.

 Averaging RNA levels across heterogeneous cell populations

 Technical issues for microarrays

 diff hybridization rate for each RNA species

 Cross-hybridization.

 Fluorescent intensity ∝ RNA abundance

 (Today) Noise: measurement / technical / biological variations. Choice of reference 
system.

Module 4 (Functional Genomics/FG) Lecture 1 recall
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 2 archetypal FG questions

 What function does a given molecule X have in a specific biological system / state?

 Which molecules (interactions) characterize / modulate a given biological system / 

state?

 Different levels of function for a bio molecule

 Chemical / mechanistic – microscopic scale event

 Biological – effects a phenotype (a macroscopic scale event)

 How does the ability to measure many (~103-4) different bio-molecules at a time 

resolve the 2 questions above?

 Without appropriate experiment design, and data analysis / interpretation, it does not 

help

Module 4 (Functional Genomics/FG) Lecture 1 recall
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 Example questions that may be asked given profiling technology

 For a clinically-distinct set of disease states, what is the minimal transcriptome subset 

distinguishing between these conditions?

 Is there a (sub)transcriptome signature that correlates with survival outcome of  stage I 

lung adenocarcinoma patients?

 Are the set of genes upregulated by cells C under morphogen M significantly enriched for 

particular functional / ontologic categories?

 Can gene interaction pathways be recovered from the transcriptome profiles of a time 

resolved biological process?

FG: Pre-analysis pointers



Module 4 (Functional Genomics/FG) Lecture 1 recall

G1 G1 + G2

G1 – G2G2

?

Rotation

× cancer
ο control

?

 2 diff qualitative views with parallel high throughput transcriptome profiling technologies

 View 1: Whole = Sum of individual parts. Only an efficient way to screen many 

molecular quantities at a time.

 View 2: Whole > Sum of individual parts. As above, plus unraveling intrinsic regularities 

(eg. correlations) between measured molecula quantities.

 Illustration: Measure 2 quantities G1, G2 in 2 disease populations. Discriminant is sign 

of G1-G2

Not many



 Pre-analysis

 Prototypical experiment designs. Exercising the transcriptome machinery

 Generic workflow in transcriptome profiling-driven studies

 Data representation, modeling, intrinsic regularities

 Dual aspects of a data matrix

 Defining a measure / metric space

 Distributions (native, null) of large scale expression measurements

 Noise and definitions of a replicate experiment. Pre-processing, normalization

 What are regularities?

 Unsupervised and supervised analyses. What is a cluster? Clustering dogma.

 Statistical significance of observed / computed regularities 

 Figure/s of merit for data modeling

 Correspondence between regularities and biologic (non-math) parameters

 Model predictions

Module 4 FG Lecture 2 outline: Large-scale transcriptome data analysis



 Prototypical experiment designs

 2-group comparisons (A)

 Series of experiments parametrized by a well-ordered set (eg. time, dosage) (B)

 Hybrid of above 

 Categorizing example questions posed earlier

 For a clinically-distinct set of disease states, what is the minimal transcriptome subset 

distinguishing between these conditions? (A)

 Is there a (sub)transcriptome signature that correlates with survival outcome of  stage I 

lung adenocarcinoma patients? (B+A)

 Are the set of genes upregulated by cells C under morphogen M significantly enriched for 

particular functional / ontologic categories? (A)

 Can gene interaction pathways be recovered from the transcriptome profiles of a time 

resolved biological process? (B+A)

 Exercising the transcriptome machinery to its maximal physiological range 

FG: Pre-analysis, experiment design



 Exercising the transcriptome machinery to its maximal physiological range. How? Subject 

system to extremal conditions.Define extremal condition? Important when looking for 

relationship between measured quantities. Eg. molecules G1, G2, G1', G2' under conditions 

T1-11.

FG: Pre-analysis, experiment design
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FG: Generic workflow in transcriptome profiling-driven studies

Appropriate tissue, 
condition, 

experiment design

Extract RNA,
chip hybridization, 

scanning

Image analysis Data analysis
modeling

Biological validation

Focus today
expanded next ...

Biological system 
and a question

Transcriptome

Profiling

Big Picture



FG: Generic (expanded) workflow in transcriptome data analysis

Map data into metric/measure 
space, model  appropriate to 

biological question

Math formulation
Data representation

Correct for noise, variation
arising not from bio-relevant

transcriptome program

Normalization
Replicates

Uncover regularities / dominant

variance structures in data

Un/supervised math  techniques. E.g., 
clustering, networks, graphs, myriad 
computational  techniques guided by 
overiding scientific question !

Likelihood of regularities 

arising from chance alone

Chance modeled by null hypothesis
Statistics
Permutation analyses

Do regularities reflect

 biological system – state?

Prediction. Inferential statistic.
Minimizing an energy functional
Correlation vs causality
Figure of Merit

Gene P1-1 P3-1 P5-1 P7-1 P10-1

Csrp2 -2.4 74.6 25.5 -30.7 14.6

Mxd3 126.6 180.5 417.4 339.2 227.2

Mxi1 2697.2 1535 2195.6 3681.3 3407.1

Zfp422 458.5 353.3 581.5 520 348

Nmyc1 4130.3 2984.2 3145.5 3895 2134.3

E2f1 1244 1761.5 1503.6 1434.9 487.7

Atoh1 94.9 181.9 268.6 184.5 198

Hmgb2 9737.9 12542.9 14502.8 12797.7 8950.6

Pax2 379.3 584.9 554 438.8 473.9

Tcfap2a 109.8 152.9 349.9 223.2 169.1

Tcfap2b 4544.6 5299.6 2418.1 3429.5 1579.4

Biological 
system / state

Transcriptome

Analysis / Modeling

Big Picture

Image 
Analysis



FG: Data representation, modeling, intrinsic regularities ... starting point

 Almost always microarray data analysis / modeling starts with a spreadsheet (data matrix) 

post image analysis

 Data representation =  mapping a physical problem and measurements onto a math 

framework. Why? Leverage of classical math results. 

EntrezID Symbol Day1-1 Day3-1 Day5-1 Day7-1 Day10-1 Day15-1

13008 Csrp2 -2.4 74.6 25.5 -30.7 14.6 -50.1

17121 Mxd3 126.6 180.5 417.4 339.2 227.2 -76.2

17859 Mxi1 2697.2 1535 2195.6 3681.3 3407.1 1648.3

67255 Zfp422 458.5 353.3 581.5 520 348 106.3

18109 Nmyc1 4130.3 2984.2 3145.5 3895 2134.3 597.1

13555 E2f1 1244 1761.5 1503.6 1434.9 487.7 98.3

11921 Atoh1 94.9 181.9 268.6 184.5 198 -246.2

97165 Hmgb2 9737.9 12542.9 14502.8 12797.7 8950.6 458.9

18504 Pax2 379.3 584.9 554 438.8 473.9 565.2

21418 Tcfap2a 109.8 152.9 349.9 223.2 169.1 -115.3

Image processing (black box?)

Here is “data” - a matrix, 

typically #Rows (Genes) 

>> #Columns (Samples)

... linear algebra will be 

very useful here

Zoom into grid coordinate
 corresponding to probe 

sequence for Mxd3

Chip for 
Day 1-1



FG: Dual aspects of a data matrix

 Typical trancriptome profiling studies have data matrix D of N genes ×   M samples / conditions 

where N >> M.

 Entries of D are typically real numbers that's either dimensioned/dimensionless. Eg. fold is 

dimensionless. This fact affects expectation about the characteristics of the distribution of gene 

intensities (Later).

 2 dualistic views of D (emphasizing different aspects of the system / state)

 Genes in sample space: Each gene has an M-sample profile / distribution of intensities 

 Samples in gene space: Each sample has an N-gene “transcriptome” profile

 In either case, data's high dimensionality makes it non trivial to visualize this data

 Recalling the 2 gene G1, G2 example (cancer vs. control) from last time / earlier – coherent 

relationships / regularities (if indeed they exist!!!) between genes and sample conditions are far less 

obvious now



FG: Defining a measure space to work in

 Define a measure / metric space S where data lives:

 To quantify dis/similarity between objects – (a fundamental requirement!)

 Choice of dis/similarity measure, metric (should) reflect biological notion of “alikeness”

 A metric d is a map from S × S →   non-negative reals such that for any x, y, z in S, 3 
cardinal properties hold

 M1  Symmetry: d(x, y) = d(y, x)

 M2  Triangle inequality: d(x, y) + d(y, z) ≥ d(x,z)

 M3  Definite: d(x, y) = 0 if and only if x = y

 Metrics d
1
 and d

2
 are equivalent if there exists  λ , λ' > 0 such that  λd

1
 ≤ d

2
  ≤ λ'd

1
 on S.

 Ideally, data is mapped into metric space to leverage on classical math theorems – even better 
map into inner product space (ℝn,  〈 ∗ , ∗〉 dot product) 

 Metric examples: Euclidean, Taxicab / City Block / Manhattan, Geodesics

 Non-Metric dissimilarity measures:

 Correlation coefficient (violates M2, M3) – angle between the projections of X and Y onto 
the unit hypersphere in S (ℝn, X and Y are n-vectors) 

 Mutual information (violates M3) – average reduction in uncertainty about X given 
knowledge of Y.



FG: Defining a measure space to work in

 Basic connections between Euclidean metric e, correlation coefficient p on same data in S = (ℝn,  〈 ∗ , ∗〉 dot 

product). Let x, y be in S; 1 = n-vector of 1's; 0 = n-vector of 0's or origin of ℝn; µ
x
 and µ

y
 be avg of x, y 

components. |x| = √ 〈 x, x〉 = length of x. [Simple exercise to check these calculations]

 A1  x = x-1µ
x
 , y = y-1µ

y
 are orthogonal to 1. Mean (µ) centering is equiv to map from ℝn to the ℝn-1 

hyperplane orthogonal to 1. Picture next slide

 A2  Variance (Std2) of x, σ
x

2 = 〈 x, x〉 /(n-1) = |x|2/(n-1). So x/σ
x
 lives on the hypersphere radius √ (n-1) 

centered at 0 in ℝn-1. Picture next slide

 A3  Recall correlation, p(x,y) = 〈 x/|x| , y/|y|〉 =  〈 x, y〉 /(|x| |y|) = cos(∠  (x,y)). Since 〈 a, b 〉 = |a| × |b| × 

cos(∠  (a,b)). Easy to see that  |x| |y| p(x, y) = 〈 x, y〉 .

 A4  Recall euclidean dist x to y:  e2(x,y) = 〈 x-y, x-y〉 = 〈 x, x〉 + 〈 y, y〉 – 2 〈 x, y〉 .

 A5  Say x and y are µ centered with std 1. Clearly x = x, y = y and 〈 x, x〉 = 〈 y, y〉 = |x|2 = |y|2 = (n-1). 

Plugging A3 into A4, e2(x,y) = 〈 x, x〉 + 〈 y, y〉 – 2〈 x, y〉 = 2(n-1) – 2|x| |y| p(x,y) = 2(n-1)(1- p(x,y)).

 ie, e2(x,y) ∝  - p(x, y) for x,y on the 0 centered radius √ (n-1) hypersphere of ℝn-1. We have encoded 

correlation structure in S = (ℝn,  〈 ∗ , ∗〉 dot product) with Euclidean metric. More about this in 

Preprocessing / Normalization section



FG: Example transformations of data in ℝ3 vision #1

 Geometric action of µ centering, ÷1 σ in ℝ3. Data = 500 genes × 3 conditions. Genes in sample 
space view

Mean centering

Divide 1 std × 10 for visualization otherwise 
normalized data scale
too small

“Raw” data

1
1 1

1
1

Condition 1

Condition 2
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“Raw” data



FG: Example transformations of data in ℝ3 vision #2 (flatland)

 Geometric action of µ centering, ÷1 σ in ℝ3. Data = 500 genes × 3 conditions. Genes in sample 
space view

Mean centering
Raw data

Divide 1 std
Raw data 

× 10 for visualization otherwise 
normalized data scale
too small

“Raw” data

Condition 1 Condition 2 Condition 3 Condition 1 Condition 2 Condition 3

Are these pix more

“informative” than 

previous set? It's identical

data after all

Condition 1 Condition 2 Condition 3

A
b

u
n

d
an

ce



FG: Defining a measure space to work in

 Graphic example 1 of differences in notion of similarity embedded in Euclidean metric vs. 

correlation space. Time series of 3 genes: G1, G2, G3

 Euclidean space: (G2 and G1) are more similar than (G2 and G3)

 Correlation space: (G2 and G3) are more similar than (G2 and G1)

 After mean centering, ÷ 1 std, in both Euclidean and correlation spaces (G2* and G3*) are 

more similar than (G2* and G1*)

G1 G2

G3

G1' G2'

G3'

G1* G2*
G3*

Mean center ÷  1 std

Obviously I rigged G2 to be scalar multiple of G3. So G2*=G3*



FG: Defining a measure space to work in

 Graphic example: When periodicity is a property of interest in data. Fourier representation

 Three genes G1, G2, G3 – their time series
O
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FG: Defining a measure space to work in

● Some modes of data representation: 

 PCA (Euclidean) - finite bases. Rotation/translation.

 Fourier (Euclidean) - infinite bases (localize “freq” domain). Signal decomposed into 

sinusoids. Periodic boundary conditions.

 Wavelet (Euclidean) - infinite bases (localize “time” domain). Signal decomposed by 

discretized amplitudinal range.

● Different approach emphasizes different regular structures within the data. There is almost 

always a geometric interpretation.

● Secondary uses: Feature reduction, de-noising, etc.

x=∑ j
a j
 j

Old Coord New Coord

Basis



FG: Native distributions of large scale expression measurements

 Recall data matrix D = N genes ×   M samples / conditions. Do D entries have units 

(dimensioned), or not (dimensionless, say fold in 2-channel microarray read-outs)?

 Consider, the transcriptome profile of a sample (samples in gene space view).

 2 basic questions (not well-defined):

 Is there a generic form for distribution of microarray data (independent of technology, 

bio-system/state)? If yes, what are it's characteristics? 

 Can these characteristics be used for quality control, or provide info about underlying 

biologic properties / mechanism?

 Power law, log normal - Hoyle et al., Bioinformatics 18 (4) 2002 Making sense of microarray data 

distributions.

 Lorentz - Brody et al. PNAS 99 (20) 2002 Significance and statistical errors in the analysis of DNA 

microarray data.

 Gamma – Newton et al, J Comput Biol 8 2001 Improving statistical inferences about gene 

expression changes in microarray data.

 Application: Characteristics of these distributions used for rational design of a null hypothesis for 

evaluating significance of intrinsic data regularities (defined later)



FG: Native distributions of large scale expression measurements

 Pictures of distributions human bone marrow (n=2 sample replicates), human brain (n=2 

sample replicates). All on Affymetrix u95Av2 platform

Bone marrow
2 separate histograms

Brain
2 separate histograms

Intensity
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Bone marrow1
Bone marrow2

Brain1
Brain2



FG: Native distributions of large scale expression measurements

 Another view: Intensity-intensity scatter plots intra- and inter- tissue. Same data as previous 
slide

Marrow1 – Marrow2
Brain1 – Brain2

Marrow1 – Marrow2
Brain1 – Brain2

Marrow1 – Brain1
Marrow2 – Brain2

Marrow1 – Brain1
Marrow2 – Brain2



FG: Characterizing and correcting noise

 Noise are variations from logical / math / scientific assumption that is expressed in the data.

 N1  Example of a scientific assumption: Closely timed repeat measurements of a system – 

state are similar (in a given metric space). Nature does not make leaps  (Leibniz, New Essays)

 N2  Conceptual sources of noise: failure to account for all parameters affecting a system – 

state, basic assumption is ill-defined.

 N3  Technical sources of noise: biological heterogeneity, measurement variation, chip micro-

environment / thermodynamics

 First characterize noise, then correct for it based on characteristics (generalization)

 Characterization: Depends on N1-3, esp. N1. Practically from N3, we design replicate experiments to 

asssess the level of measurement / technical and biological (more complex) variation. Some chips 

have built-in housekeeping probes – benchmark dataset.

 Correction: Via “pre-processing” (data from a single chip independent of other chips) or normalization 

(data across different chips) – essentially math transformations that aim to minimize noise while 

preserving expression variations that arise from biologically relevant transcriptome activity [... vague]

 Question: Intensity distribution over all probes (2-3 slides ago) related to variations of a probe?



FG: Characterizing noise – replicates

 Different levels of being a “Replicate” experiment

 Intensity-intensity scatter plots of chip read-outs between “Replicates”

 These data used to characterize noise (eg. define a noise range / interval) – many 
standard ways to do this

Pool*

R1 R2 R1 R2 R1 R2

R1 R1 R1

R2R2R2

R1

R1

Measurement variation
Biological variation “+” 
Measurement variation Measurement variation

* Recalls issue of averaging transcriptome
 of heterogeneous cell populations

“+” typically not 
linear / additive



FG: Correcting noise – pre-processing, normalization

 Math transformations that aim to minimize noise while preserving expression variations that 

arise from biologically relevant transcriptome activity

 “Pre-processing” (data from a single chip independent of other chips) 

 Normalization (data across different chips). We'll use this to refer to pre-processing too.

 House-keeping probes on some chips – benchmark dataset to characterize chip 

technical micro environmental variations

 Frequently used transformations

 “Standardization” / central-limit theorem scaling (CLT) – mean center , divide by 1 std

 Linear regression relative to a Reference dataset. Corollary: All normalized samples 

have same mean intensity as Reference.

 Lowess, spline-fitting, many others – all with their own distinct assumptions about 

characteristics of noise and array-measured intensity distribution.



FG: Regularities in data

Zoom out

Regularities, coherent

structures.

Zoom out

Zoom out

 A graphical example, intensity-intensity plot of a dataset at multiple scales. 3 questions:

 Criteria for regularity?

 Likelihood of such regularities arising by random confluence of distributions?

 Biological relevance?

ie. How do we know that
we are not hallucinating?



FG: Regularities in data

 Regularities refer to dominant variance structures or coherent geometric structures intrinsic to 

data with respect to a particular measure space. An observed pattern can sometimes be 

regarded a regularity if it can be correlated to a priori scientific knowledge.

 Recall a data matrix D = N ×  M may be view as genes in sample space, or samples in gene 

space. Questions:

 Given any D in a specific metric space, do regularities exist? Eg. If D was considered a 

linear transformation ℝM →  ℝN, it would make sense to look for invariants of D 

(eigenvectors)

 Why would anyone look for regularities?

 How to look for regularities? ... cluster-finding algorithms? What is a “cluster”? Clusters = 

regularities?

 Now we arrive at heart of analysis proper: Supervised versus unsupervised techniques,

 Supervised: a priori scientific knowledge is explicit input parameter into computation, eg. ANOVA 
ranksum test, t test.

 Unsupervised: Input parameters do not explicitly include a priori scientific knowledge, eg. 
clustering algorithms such as k-means, ferromagnetic (Ising-Potts)
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FG: Regularities in data example
S
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Cereb postnatal days

P
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2 
24

.2
6%

PC1 58.64%
PCA* representation

Coherent structures / regularity here?

 Example: Mouse cerebellum postnatal development, data matrix D = 6,000 genes ×  9 time 

stages (measurement duplicated at each stage, so really 6,000 ×  18)

 Genes in sample space view 1. Euclidean space

*PCA = principal component analysis, singular 
value decomposition

Replicates a, b 
@each stage



FG: Regularities in data example

 Same data as previous slide. Each gene is standardized / CLT normalized across conditions.

 Genes in sample space view 2. Correlation space
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4%

PC1 57.92%
PCA* representation

Coherent structures / regularity here?

Cereb postnatal days
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*PCA = principal component analysis, singular 
value decomposition

Replicates a, b 
@each stage



FG: Regularities in data example

 Same data as previous slide. The dual to genes in sample space view 1

 Samples in gene space view 1. Euclidean space

*PCA = principal component analysis, singular 
value decomposition
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FG: Regularities in data example

 Same data as previous slide. Each sample is CLT normalized across genes.

 Samples in gene space view 2. Correlation space

*PCA = principal component analysis, singular 
value decomposition
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o configurations say anything bio relevant?

Replicates a, b 
@each stage



FG: Reality check and figures of merit in modeling

 Unsupervised and supervised analyses. What is a cluster? Clustering dogma. Next lecture

 Statistical significance of computed / observed regularity

 Need null hypothetic distribution as reference system to assess significance. Standard 

statistics.

 Non-parametric: Permutation tests. Mode of permutation modulated by assumptions about 

random action / effects (null hypothesis ... modeling chance) producing a given transcriptome 

profile / state. Re-analyze permuted data following same approach as for unpermuted, and 

watch for regularities.

 Figure/s of merit:

 1 biological system – state →   1 transcriptome profile dataset →   >1 possible models. Which 

model is optimal?

 For each model, perform sensitivity / specificity analysis (ROC curves) on simulated data

(drawn from putative distribution of actual data) which have regularities explicitly embedded

 Prediction on independent test dataset, coupled with biological knowledge.Overfitting and 

non generalizability



 Murray Gell-Mann, The Quark and the Jaguar: “Often, however, we encounter less than ideal 

cases. We may find regularities, predict that similar regularities will occur elsewhere, discover 

that the prediction is confirmed, and thus identify a robust pattern: however, it may be a 

pattern for which the explanation continues to elude us. In such a case we speak of an 

"empirical" or "phenomenological" theory, using fancy words to mean basically that we see 

what is going on but do not yet understand it. There are many such empirical theories that 

connect together facts encountered in everyday life.” 

 Comte de Buffon, “The discoveries that one can make with the microscope amount to very 

little, for one sees with the mind's eye and without the microscope, the real existence of all 

these little beings.” 

Module 4 FG Lecture 2 outline: Large-scale transcriptome data analysis

Meaning of regularities

Point of mathematical formulation


