
Harvard-MIT Division of Health Sciences and Technology 
HST.508: Quantitative Genomics, Fall 2005 
Instructors: Leonid Mirny, Robert Berwick, Alvin Kho, Isaac Kohane 

Notes on population genetics and evolution: “Cheat sheet” for review 

1. Genetic drift 
Terminology. Genetic drift is the stochastic fluctuation in allele frequency due to random 
sampling in a population. 

Polymorphism describes sites (nucleotide positions, etc.) variable within a species; 
divergence describes sites variable between species. 

1.1 Wright-Fisher model. 
The Wright-Fisher model describes the process of genetic drift within a finite population. 
The model assumes: 

1.	 N diploid organisms (so, 2N gametes) 
2.	 Monoecious reproduction with an infinite # of gametes (no sexual 

recombination) 
3.	 Non-overlapping generations 
4.	 Random mating 
5.	 No mutation 
6. No selection 

The Wright-Fisher model assumes that the ancestors of the present generation are 
obtained by random sampling with replacement from the previous generation. Looking 
forward in time, consider the familiar starting point of classical population genetics: two 
alleles, A and a, segregating in the population. Let i be the number of copies of allele A, 
so that N–i is the number of copies of allele a. Thus the current frequency of A in the 
population is p = i/N, and the current frequency of a is 1–p. We assume that there is no 
difference in fitness between the two alleles, that the population is not subdivided, and 
that mutations do not occur. This gives the familiar formula for the probability that a gene 
with i copies in the present generation is found in j copies in the next generation: 
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Let the current generation be generation zero and Kt represent the counts of allele A in 
future generations. The binomial equation above states that K1 is binomially distributed 
with parameters N and p = i/N , given K0 = i. 

From standard results in statistics, we know the mean and variance of K1: 

E[K
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So, the number of copies of A is expected to remain the same on average, but in fact may 
take any value from zero to N. A particular variant may become extinct (go to zero 
copies) or fix (go to N copies) in the population even in a single generation. Over time, 
the frequency of A will drift randomly according to the Markov chain with transition 



probabilities given by the above formula, and eventually one or the other allele will be 
lost from the population. 

Perhaps the easiest way to see how the Wright-Fisher binomial sampling model works is 
through a biologically motivated example. Imagine that before dying each individual in 
the population produces a very large number of gametes. However, the population size is 
tightly controlled so that only N of these can be admitted into the next generation. The 
frequency of allele A in the gamete pool will be i/N, and because there are no fitness 
differences, the next generation is obtained by randomly choosing N alleles. The 
connection to the binomial distribution is clear: we perform N trials, each with p = i/N 
chance of success. Because the gamete pool is so large, we assume it is not depleted by 
this sampling, so the probability i/N is still the same for each trial. The distribution of the 
number of A alleles in the next generation is the binomial distribution with parameters (N, 
i/N) as expected. 

The decay of heterozygosity. 
Before we take up the backward, ancestral process for the Wright-Fisher model, we will 
look at the classical forward derivation. The heterozygosity of a population is defined to 
be the probability that two randomly sampled gene copies are different. For a randomly 
mating diploid population, this is equivalent to the chance that an individual is 
heterozygous at a locus. Let the current generation be generation zero, and let p0 be the 
frequency of A now. The heterozygosity of the population now is equal to H0 = 2p0(1–p0), 
the binomial chance that one allele A (and one a) is chosen in two random draws. 

Let the random variable Pt represent the frequencies of A in each future generation t. 
Then, as we have seen in earlier lectures, in the next generation the heterozygosity will 
have changed to be H1 = 2P1(1–P1). However, H1 will vary depending on the random 
realization of the process of genetic drift. On average, heterozygosity (variation) will be 
lost through drift: 
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In the haploid case, we replace 2N by N. After t generations, we have: 
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The approximation is valid for large N. Thus, as we’ve seen, in the Wright-Fisher model, 
heterozygosity decays at rate 1/N per generation, 1/2N if diploid. The decrease of 



heterozygosity is a common measure of genetic drift, and we say that the drift occurs in 
the Wright-Fisher model at rate 1/N (1/(2N) if diploid) per generation. 

We can also get the same result in this way. From the Hardy-Weinberg principle, if p is 
the frequency of the allele A1 and (1–p) is the frequency of allele A2, and if there is 
random mating, the frequency of A1A1 , A1A2, and A2A2 individuals in the next generation 

2is given by p2, 2p(1p), and (1–p) . Thus, the proportion of homogzygous individuals, F= 
p2+(1–p)2 and the fraction of heterozygous individuals, H=2p(1-p). 

The probability of an individual being homozygous (i.e., ‘the same’, either A1A1 or A2A2 
in the next generation is as follows (following the recitation/lecture analysis): 
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The probability of an individual being heterozygous, or ‘different’ is H=1–F. So, 
Ht+1= [1–1/(2N)]Ht 
Ht = [1–1/(2N)]tH0 

-xt When x<< 1, then (1–x)t is approximately e , so, 
Ht≈ H0e–t/2N 

As t→∞, Ht→0 

A familiar example of genetic drift. Say there ~15,000 genes in the human genome, and 
since we are diploid, that means we have two copies of each. On average, there is a 
polymorphic nucleotide site about every 500 to 2000 bases. Let's say 1 kb for argument's 
sake. Let’s further say the average gene is 1000 bases (1 kb). So by this crude reasoning, 
we are all heterozygous at every locus, on average. Now, suppose you are an only child. 
You got one copy of a gene from mom and the other copy from dad. Since you are their 
only child, that means that one allele from each gene in each parent’s genome did not 
make it into the next generation (i.e., was “lost”). Clearly, natural selection did not favor 
anything like all 15,000 (times two) of the alleles that made it into your genome and 
disfavor the 15,000 (times two) that did not. Almost all of the alleles that made it into 
your genome made it at random. 

Fluctuations in population size. Suppose the population size is N1, N2, …, Nt in 
generations 1, 2, …, t. Then we have: 

H1= [1-1/2N1]H0 
H2= [1-1/2N2]H1 = (1-1/2N2)(1-1/2N1)H0 
Ht = [1-1/(2Nt))] 
Ht-1=[1-1/(2Nt)]…[1-1/(2N2)][1-1/(2N1)]H0 

Let Ne be the effective size of the population, i.e., the size of a population that has the 
same rate of loss of heterozygosity as the one with fluctuating population sizes. Thus, we 
want to find the value of Ne that satisfies: 



[1-1/(2Nt)]H0=[1-1/(2Nt)]…[1-1/(2N2)](1-1/(2N1)]H0 

Again approximating by a Taylor series, we have: 
-t/2Ne = (e-1/2Nt)…(e-1/2N1e ) or, taking logs of both sides: 
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Thus Ne is the harmonic mean of the actual population size. Since the harmonic mean is 
dominated by the smallest terms, population bottlenecks, or brief reductions in actual 
population size, can have a strong influence on the effective population size and 
heterozygosity (read: variance). (This is called variance effective population size.) 
Effective population size is crucial to all the calculations because the mathematical 
results depend on the assumption that the Wright-Fisher idealization of binomial draws is 
being maintained. 

1.2 Effective population size 
More generally, the effective population size is thus the size of an idealized population 
that has the same magnitude of drift as an idealized Wright-Fisher population. The 
effective population size is always less than the census population size due to factors such 
as this one. Other cases may be dealt with as in the case of fluctuating population size, 
by figuring out what value of N that would yield the same rate of loss in heterozygosity 
‘as if’ the population were an ideal Fisher-Wright sample – that is, by calculating, in each 
particular instance, what the reduction in variance is from generation to generation, as we 
did above, and then back calculating what the value of N ‘should have been.’ Some 
examples include: 

1. Unequal numbers of males and females. Imagine a zoo population with 20 
males and 20 females. Due to the dominance hierarchy only one of the males 
actually breeds. What is the relevant population size that informs us about the 
strength of drift in this system? 40? 21? If Nm is the number of breeding males 
(1 in this example) and Nf the number of breeding females (20), then half of the 
genes in the offspring generation will derive from parent females and half from 
parent males 
2. Overlapping generations 
3. Non-Poisson distribution of fecundity (i.e., different numbers of offspring) 
4. Non-random mating, i.e., population structure in general 

3. Coalesent theory 
Coalescent theory describes the genealogical relationships among individuals in a 
Wright-Fisher population. 

Notation: Let T2 be the time in generations until the most recent common ancestor 
(coalescence) of two genes (alleles, sequences,…) chosen at random from a population of 
size N (better and more correct: Ne . We will also call these lineages. Also, from now on, 
whenever we use “N” we really mean Ne.). We assume in what follows that the genes, 
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sequences, etc. are drawn from a single species. (This is important for some of the 
statistical calculations testing for selection, below.) 

In general, Ti= the time until the coalescence of i lineages (genes, alleles, sequences,…). 
That is, after coalescence, the two genes are identical. We are interested in the 
distribution of the ‘waiting times’ until each coalescence, as well as the variance of these 
times, and, further, the expected waiting time and the total waiting time until all lineages 
have collapsed into a single common ancestor. It turns out that all this can be described 
as a stochastic process with rather simple properties. Note that each coalescent event is 
independent of all others – the waiting times are independent. 

3.1 Basic results. 
Measured in discrete time, in a Wright-Fisher population of size 2N the distribution of 
waiting times until the collapse (coalescence, identity) of two sequences is geometric 
with the probability of success p (= coalescence) = 1/(2N) in any one generation, and so 
the probability of failure (= not coalescing) is 1-p, or [1-1/(2N)]. (Note the close relation 
between this and the heterozygosity computation.) It is easy to see that the waiting times 
form a geometric distribution by considering the probability that up until time t a 
coalescent event has not occurred, as the product of t ‘not coalescing’ events, just as with 
the heterozygosity iteration. If we let P(T2>t) denote the probability that two lineages 

not t

P(T
2
> t) = 1!

1

2N

"
#$

%
&'
t

,t = 0,1,2,...

t

have coalesced, for times =0, 1, 2, …, then this is simply: 

so the probability that two lineages collapse at exactly the th time step is: 

And this is clearly a geometric distribution. 

3.1.1 A very, very intuitive picture. 
We can gain a very intuitive picture of the same process by the following argument. We 
start by considering the coalescence time in a sample of two genes. Genes X and Y live in 
the present generation, and their common ancestor A lived t generations ago. 
Consequently, as we look backward from the present into the past, the two lines of 
descent remain distinct for t generations, at which time they coalesce into a single line of 
descent. In a given generation, the lines coalesce if the two genes in that generation are 
copies of a single parental gene in the generation before. Otherwise, the two lines remain 
distinct. 
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What can we say about the length of time, t, that they remain distinct? The problem is a 
lot like the following. Suppose that we are talking about the life-span of a piece of 
kitchen glassware. Eventually, someone will drop it and it will break. Suppose that the 
probability of breakage is h per day and its expected lifespan is T days. To see how h and 
T are related, consider the two things that can happen on day one: The glass either 
survives the first day or it breaks. It breaks with probability h, and in this case its lifespan 
is 1 day. It survives with probability 1–h. Further, for surviving glasses, the mean 
lifespan is 1+ T. Why? Because a glass doesn't age; its hazard of breakage is always h 
regardless of how old it is. Consequently, the expected life remaining to a glass does not 
depend on how old it is. Our one-day-old glass can expect to live T additional days, so its 
expected lifespan is 1 + T. Putting these facts together gives an expression for T in terms 
of itself: 

T = h + (1–h)(1 + T) 

So, T=1/h. (You can also derive the result using calculus.) Returning to gene lineages, if 
we knew the ‘hazard,’ h, that the lines of descent will coalesce (or collide) during a 
generation, then this would tell us immediately the mean number of generations until the 
two lineages coalesce. But we do know this: If there are G distinct genes in the 
population, then h = 1/G. More generally, the probability that two genes are identical 
when drawn from a (diploid) population is 1/(2N). 

3.1.2 Results derive from the geometric distribution of ‘waiting times’ until lineages 
coalesce 
A geometric probability distribution may be described by Prob{x=i}=qi-1p, where p is the 
probability of success on any one trial, and q is the probability of failure. From basic 
statistical theory, we know that the mean of a geometric distribution function is just the 

2inverse of the probability of success, p=1/2N, and its variance is q/p2= (1-p)/p . 
So: 

(i) The expected value for the time to coalescence for a sample of 2 genes (sequences,…) 
is just the following, where N measured in units of generations: 

Further, we also know the variance of the geometric is in this case: 

Note that the variance is quite large. 

In general, for n lineages: 
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(ii) The expected time to coalescence from k to k-1 lineages is: 
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So for example, if we have 3 sequences, the time to the first coalescence will be, on 
average: 

This makes sense, since for the first coalescence, we have a (3 choose 2) or 3 possible 
ways of collapsing 3 sequences together (1st and 2nd; 1st and 3rd; 2nd and 3rd) – there are 
more cars in the intersection, so a higher chance that they will ‘collide’, and so a lower 
waiting time until they do coalesce (specifically, 1/3 of the average time when there are 
only 2 sequences). 
And so on: for four lineages (sequences), we initially have 4-choose-2 options to 
collapse, which gives an expected time to first collapse of 2N/6 = 1/6 (2N), etc. 

(iii) The total length of all the branches in the genealogy tree, E[Ttot] , which is an 
important value that we’ll use to figure out the expected nucleotide diversity, may be 
computed as follows: 
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(iv) The time to coalescence of all n lineages (the so-called “time to most recent common 
ancestor,” MRCA), and so the total expected depth of the coalescent, can be found as 
follows. Note that this expected time is ‘about’ 4N, a bit less with a small factor 
dependent on the sample size n. Therefore, sampling an n+1st sequence adds only 2/n to 
what may already be a sizeable number. This has implications for the measurement of 
DNA sequence polymorphism, which we describe below. Further, the equation for 
MRCA means that in generational units of 2N, the time to MRCA is always very close to 
its asymptotic value of 2, even for moderate n. Thus, for all but the smallest samples, 
there will likely be a large number of coalescent events in the very recent history of the 
sample. 
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(v) Properties of the shape and size of the coalescent tree. 
Note that the full coalescent tree is dominated by the most ancient coalescent, of depth on 
average 2N. The tree collapses to just two lineages in expected time 2N, then collapses all 
the rest of the way, from 2 lineages to 1 in another expected time of 2N. 

(vi) We can pass from the discrete, geometric distribution to its continuous analog as 
follows, following the Rice book: Since for 2N > 100, we can expand e-1/2N as a Taylor 
series approximately equal to (1-1/2N), we can rewrite the geometric distribution as an 
exponential distribution: 
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If we rescale time in generational units of τ= t/2N, so that one ‘clock tick’ is set to this 
value, then we can simplify the basic coalescent results in a much neater form, which will 
also let us get the variance in a useful form: 
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We see that 2N (where N is of course actually the effective population size) is the 
‘natural unit’ for considering lineage coalescence. 

3.2 Adding mutations: The coalescent and the neutral theory 
We now add mutations to the genealogical tree to get some actual results and tests. The 
idea is this: rather than ask, “for a given mutation parameter, what can we say about the 
ancestry of the sample?” we ask the more relevant question: “given this sample, what can 
we say about the population?” 

The key idea to adding mutations to the coalescent tree is that what we observe in terms 
of segregating sites are two superimposed, independent stochastic processes: one due to 
the lineages collapsing (which are n-1 independent, exponentially/geometrically 
distributed waiting times) and the other due to the random, neutral mutations sprinkled on 
top of this lineage collapse pattern (which for large population sizes may be considered to 
be Poisson distributed). 



The expected number of segregating sites in a sample of size n, Sn , (what we also simply 
call polymorphisms), will just be the neutral mutation rate u times the expected time in 
the coalescent, or: 
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We label 4Nu as θ, so we can re-write this as: 
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Here, Sn is what we measure, e.g., from SNP data, while theta is estimated. This 
particular estimator was first given by Watterson (1975), and it is ‘unbiased’ in the sense 
that its expected value is the true value of the number of segregating sites. 

Of course, in order to do statistical estimation, we really need to know something about 
the variance of our estimator. The variance of the number of segregating sites is really the 
sum of two components, one due to the coalescence tree (conditioned on the depth of the 
tree), and one due to the variation due to the Poisson mutation process. We give the 
following sketch to compute this without the full proof, where Tn is the depth of the 
coalescence tree: 
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so this variance approaches 0 as n approaches infinity. This means one can attain any 
level of precision desired by choosing the sample size sufficiently large (but don’t expect 
the precision to be much better than half the size of the estimate unless the sample size is 
absurdly large – we leave that exercise to you to check out). Such estimators are called 
consistent. 



Sij =  number of mutations separating individuals i and j

An important point: our model of mutation here is traditionally called the infinite sites 
model. Note that in doing this computation about neutral mutations and their ultimate 
‘effect’ in showing up as segregating sites, via sprinkling on the coalescent branches, we 
have made implicit use of an assumption: each mutation is at a different site in the 
sequence, so that each mutation produces a distinct, segregating ‘spot’ on the DNA 
sequence. Roughly, this is what permits us to equate the number of segregating sites to 
the simple multiplication of the neutral mutation rate times the expected tree depth. You 
might want to think through what would happen if we allowed multiple ‘hits’ at the same 
nucleotide position. If we assume that the mutation rate is, say, 10-6 – 10-8 per base pair 
per replication, and that sequences are of ‘average’ length (like what?) then this 
assumption does not seem too bad, so the infinite sites model seems OK for sequences. 

3.3 Using the coalescent to test hypotheses about nucleotide diversity: Tajima’s D 
Now we can actually construct a test of the neutral hypothesis, based on two estimators of 
theta. Another way we have of estimating θ is to just calculate the number of mutations 
separating individuals two at a time, and average over all pairs. This may be thought of 
as a sample average to estimate a population average, and is a common measure of 
nucleotide diversity. Denote by 

Under the infinite sites assumption, we can calculate Sij from a sample by calculating the 
number of segregating sites between sequences i and j. If we average Sij over all pairs 
(i,j) in a sample of size n this is called the average number of pairwise differences. We 
denote this by: 
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Note that we can think of individuals (i,j) as a sample of size 2, so: 
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under the standard neutral model. Significant deviations from zero should cause the null 
model to be rejected (i.e., there is possibly positive selection). Specifically, Tajima 
(1989) proposed the test statistic: 
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The denominator of Tajima’s D is an attempt to normalize for the effect of sample size on 
the critical values. We have to estimate this denominator (hence the ‘hat’ on Var) from 
the data by using the formula: 
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This looks formidably complicated, but it’s really not (though tricky to derive): the 
coefficients come from the computation of the variance difference between the two 
estimators just as we derived the variance of Sn above. 

To actually use this test, Tajima suggested that the distribution of D might be 
approximated by a certain form (not quite a normal distribution, but a beta distribution), 
and provided tables of critical values for the rejection of the standard neutral model. The 
upper (lower) critical value is the value above (below) which the observed value of the 
statistic cannot be explained by the null model. As with any statistical test, it is necessary 
to specify a significance level alpha, which represents the acceptability of rejecting the 
null model just by chance when it is true. Roughly, values of Tajima’s D are significant 
at the 5% level (alpha = 0.05) if they are either greater than two or less than negative two. 
However, D is not exactly beta-distributed and critical values are often determined using 
computer simulation. (This is any area of on-going research.) There are several other 
related tests that you will probably encounter that are based on the same idea (Fu and Li’s 
D* and F tests, e.g.). 

As far as how the D value responds to deviations from the neutral model, which is the 
most important thing, this can be understood in the following way. First, the sign of the 
test is determined only by the sign of the numerator, since the denominator is always 
positive. The D value becomes negative when there is an excess of either low-frequency 
(rare) or high-frequency polymorphisms and a deficiency of middle-frequency 
polymorphisms. This might be caused by positive selection, or, alternatively, expanding 
population size (note that the Tajima model assumes constant population size for the null 
hypothesis). Large positive values of D can result from population contraction, or the 
balancing selection of two alternative polymorphisms. The sensitivity to demographic 
parameters cannot be overstressed. (Below we turn to a test for selection that does not 
make any such demographic assumptions, the McDonald-Kreitman test; however, it is 
correspondingly less powerful.) 



4. Testing selection vs. neutrality: Ka/Ks; McDonald-Kreitman (MK) test 
Recall from the redundancy of the genetic code that certain nucleotide changes have no 
effect on the corresponding amino acid coded for – these are called synonymous 
nucleotide substitutions. Otherwise, a substitution is nonsynonymous (For example, both 
CAA and CAG code for glutamine, but CGA codes for arginine, so the first one-letter 
change alters the amino acid coded for, while the second does not.) 

The MK test compares polymorphic and fixed differences found at synonymous and 
nonsynonymous sites. Because synonymous and nonsynonymous sites are interleaved, 
one can assume they have the same mutation rate, and so (by taking ratios), we can factor 
out this usually unknown rate. So, we can test whether the ratio of polymorphism (within 
species differences) to divergence (between species differences) is the same for both 
synonymous and nonsynonymous sites. Call KA the nonsynonymous fixed differences 
(the “A” reminding us that the change alters the coded-for amino acid), and KS the 
synonymous changes. Similarly,within a species, using S for a segregating site as before, 
we have SA and SS. If the neutral theory holds, then KA/KS = SA/SS. 

Here’s how to use it. 
Consider the evolution of a protein coding gene in two closely related species. Suppose a 
sample was taken from each of the species. When the sequences from these two samples 
or populations are aligned together, polymorphic (variable) nucleotide sites can be 
identified. Each polymorphic site can be classified by two criteria. One is whether the 
polymorphic site is a difference between samples or a difference between seqences within 
a sample. Another criteria is whether the change is synonymous. A change is 
synonymous if it leads to a synonymous codon and otherwise non-synonymous. The 
result is conveniently presented by the following four values: 

Within species Between species 
Synonymous a b 
Non-Synonymous c d 

where a, for example, is the number of polymorphic sites that are both within sample 
variation and synonymous change. When mutations are selectively neutral, one can 
expect that the ratio of synonymous and nonsynonymous changes remains constant over 
time. Therefore, whether a mutation is synonymous should not depend on if it is a within 
sample polymorphism (occurred recently) or a between sample polymorphism (occurred 
long time ago). In statistical terms, the two classifications of polymorphic sites are 
independent under the null hypothesis that mutations are selectively neutral. A simple test 
of the null hypothesis is a Chi-square test, which is 

X2 =n(ad-bc)2 /[(a+b)(a+c)(b+d)(c+d)] 

where n=a+b+c+d is the total number of polymorphic sites. When n is not small, X2 

follows approximately a Chi-square distribution with one degree of freedom. So if the 
value of X2 is larger that 3.841, the null hypothesis can be rejected at 5% significance 
level. 




