
Module 4 (Functional Genomics/FG) recall Lecture 2 data analysis workflow

Map data into metric/measure 
space, model  appropriate to 

biological question

Math formulation
Data representation

Correct for noise, variation
arising not from bio-relevant

transcriptome program

Normalization
Replicates

Uncover regularities / dominant

variance structures in data

Un/supervised math  techniques. E.g., 
clustering, networks, graphs, myriad 
computational  techniques guided by 
overiding scientific question !

Likelihood of regularities 

arising from chance alone

Chance modeled by null hypothesis
Statistics
Permutation analyses

Do regularities reflect

 biological system – state?

Prediction. Inferential statistic.
Minimizing an energy functional
Correlation vs causality
Figure of Merit

Gene P1-1 P3-1 P5-1 P7-1 P10-1

Csrp2 -2.4 74.6 25.5 -30.7 14.6

Mxd3 126.6 180.5 417.4 339.2 227.2

Mxi1 2697.2 1535 2195.6 3681.3 3407.1

Zfp422 458.5 353.3 581.5 520 348

Nmyc1 4130.3 2984.2 3145.5 3895 2134.3

E2f1 1244 1761.5 1503.6 1434.9 487.7

Atoh1 94.9 181.9 268.6 184.5 198

Hmgb2 9737.9 12542.9 14502.8 12797.7 8950.6

Pax2 379.3 584.9 554 438.8 473.9

Tcfap2a 109.8 152.9 349.9 223.2 169.1

Tcfap2b 4544.6 5299.6 2418.1 3429.5 1579.4

Biological 
system / state

Transcriptome

Analysis / Modeling

Big Picture

Image 
Analysis

Evolution Function

Sequence

Structure

Data matrix
D = N × M
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FG: recall Lectures 1,2 two archetypal FG questions

 What function does a given molecule X have in a specific biological system / state?

 Function at its most basic refers to – microscopic chemical (inter)actions of X 

with other (un / known) molecules. And processes downstream of X which 

might eventually snowball / scale (in time, space) into a phenotypic / 

macroscopic event.

 Mapping from sequence to function.

 Which molecules (interactions) characterize / modulate a given biological system / 

state?

 Regularities (if they exist at all) in transcriptome data may be molecular 

reflections of the system state.

 Mapping from regularities to system state.

Sequence 
/ Gene

Interactions
between genes

Regularities Function System state



FG: recall Lecture 2 regularities in data

 Regularities refer to dominant variance structures or coherent geometric structures intrinsic to data 

with respect to a particular measure / metric space. 

 An observed pattern may be regarded a regularity if the pattern can be correlated  to a priori scientific 
knowledge. Caveat: bias (supervised analysis to additionally test for bias)

 Eg. in a 2-group comparison study, k of N genes were found to be differentially expressed between 
groups. “Step” function pattern for each gene is a regularity.

 Statistical likelihood of obtaining regularities given the data distribution

 A priori knowledge/assumptions of underlying distributions to form relevant null hypotheses. Internal 
correlations and structural assumptions to reduce theoretical degree of freedom – modifying null 
hypothesis

 Multiple testing. Bonferroni-type corrections: (type 1 error / false +) α →   α/(# of times test applied)

 Correspondence of regularities to biologically relevant programs

 Eg. in 2-group study, step pattern reflects biologic difference?
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Module 4 FG Lecture 3 outline: Modeling / conceptualizing implicit regularities / functional 
relationships in transcriptome datasets

 Today's viewpoint is genes in sample space. Objective: To induce / impose structure or 

granularity on the dataset D = N genes ×  M samples in a principled way in keeping with a 

biological question

 Functional / ontogic similarities and clustering configurations.

 What is a cluster? Clustering dogma

 Survey canonical clustering principles. (Non-)Hierarchical, (Non-)Parametric, Global / Local cost 

criteria, Agglomerative / Divisive.

 Infering networks of biomolecular interactions

 Biomolecular interactions as (time in/dependent) dynamical systems. Discrete (eg. Binary / Boolean) / 

Continuous. Deterministic / Stochastic. Asymptotic behaviour.

 3 properties – Feedback, Redundancy, Modularity

 Forward / Backward modeling

 Figure/s of merit in clustering and modeling interactions

 Correlation vs. causality. Receiver operating characteristic (ROC) analysis.

 Lessons from metabolic network models, flux balance analysis 

Cluster

Network

“Correlation”

“Causality”

Some structure
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FG: Functional / ontologic similarities and clustering configurations

 View: Genes in a (sample-wise) metric space. Goal: Partition the genes in sample space into 

disjoint subsets (clusters, usually optimizing some non-negative global / local cost criterion). This 

procedure is called clustering.



 Why do this? To obtain mesoscopic / macroscopic scale summary structure for data 

(reductionist). Clusters might reflect distinct bio relevant system programs / dynamics.

 Clusters are one type of regularity.

 Basic assumptions

 At least one data partition exists

 Cost criteria encodes a priori assumptions about cluster structure (technical)

 Sometimes, cost criteria encodes a priori  knowledge of program characteristics underlying the 
biological system.

 What is a “cluster”? From Jain & Dubes, Algorithms for Clustering Data 1988,

 “There is no single best criterion for obtaining a partition because no precise and workable definition 

of “clusters” exists. Clusters can be of any arbitrary shapes and sizes in a multidimensional pattern 

space. Each clustering criterion imposes a certain structure on the data, and if the data happens to 

conform to the requirements of a particular criterion, the true clusters are recovered”
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FG: Functional / ontologic similarities and clustering configurations

 Clustering dogma: Co-cluster (to be in a common cluster) ⇔   Co-regulated ⇔   Co-functional

 Exceptions: time lag exists between effector and affected, many correlated processes have no 
common higher level ontology. Aspect of more fundamental problem of correlation vs. causality (later)

 Different metric space + clustering algorithm combinations →   different partitions of a dataset.

 Each combination emphasizes a different regularity in the dataset. Cost criterion often implicit in 
metric space / clustering algorithm.

 Partitional clustering = assumes a pre-set # of “original” clusters.

 Parametric = assumes some knowledge of cluster structure encoded in a global criterion eg. cluster 
is radially symmetric. 

 Non-parametric = no prior knowledge of cluster structure, use a local criterion to build clusters via 
local data structure, eg. Regions of high gene density in sample space)

 Gross taxonomy of clustering algorithms

 Sequential

 Spectral (more a transformation than a clustering algorithm)

 Hierarchical

 Optimizing a cost criterion (includes graph-based)

 Sequential clustering. Pick initial singleton (1st seed) at random. Find objects most similar (< a similarity 
threshold) to initial object, then consecutive objects most similar to those iteratively.Otherwise, pick singletons 
not previously picked (nor sequentially dependent to previous seeds) as new seed. Sequentially dependent 
objects form a cluster. Sensitive to choice of 1st seed. 



FG: Functional / ontologic similarities and clustering configurations

 Spectral Clustering. S= N ×N pairwise similarity matrix (eg. S = covariance matrix). D = diagonal 

with diagonal entries of S. L = D-½  SD½. X = column of k eigenvectors of L normalized to length 

1. Each row of X is in ℝk. Form k clusters via any other canonical clustering algorithm (cost 

optimization, hierarchical).

Figures from Ng, Andrew Y., Michael Jordan, and Yair Weiss. "On Spectral Clustering: Analysis and an algorithm." NIPS 14 (2002). 
Courtesy of Andrew Y. Ng, Michael Jordan, and Yair Weiss. 

Figures removed due to copyright considerations.



FG: Functional / ontologic similarities and clustering configurations

 Hierarchical clustering. A hierarchy of clustered objects. No prior assumption about # of clusters

 Agglomerative (bottom up). Start with singleton clusters. @ each iteration, fuse cluster pairs that are 
most similar to form one (single, complete or average linkage*)

 Divisive (top down). Start with 1 cluster of all objects. At each iteration, divide each parent cluster into 
2 most dissimilar subsets within the parent. Computationally more expensive than agglomerative.

 *Linkage = deciding on a vector of features to represent a branch / cluster.

 Hierarchical clustering limitations. N2 computation time. Unstable, >1 different trees from 1 run.

 Illustration of hierarchical clustering (recall iconic example 1 Lecture 1 Alizadeh et al , Nature 2000)

 Correlation coefficient as measure of similarity for clustering samples (samples in gene space). Agglomerative 
hierarchical clustering. Linkage not specified, I guess average.

Figure removed due to copyright reasons. Please see:
Alizadeh, et al. "Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling." 
Nature 403, 6769 (Feb 3, 2000): 503-11. 



FG: Functional / ontologic similarities and clustering configurations

  Clustering that optimize a global / local cost criterion. Partitional = Cluster N objects into K (<N). 

Algebraically, # clusters ≤ (matrix) rank of D!!

 Example clustering algorithms that optimize a cost criterion

 k-means. Widely used benchmark to compare clustering algorithms. Start with k centroids scattered at “random” in the 
sample space. Each gene is assigned to its closest centroid. Recalculate each centroid based on genes assigned to it. 
Iterate until “distance” between consecutive generations of centroids fall below a threshold.

 Self-organizing maps (SOM). Constrained version of k-means. Centroids linked together on a grid topology. Each 
iteration, pick a gene at random. This gene attracts nearest centroid and some this centroid's neighbours. Eventually 
random gene will only attract nearrest centroid. Same stop criterion as k-means.

 Expectation-Maximization (EM). Like k-means. Fit a mixture of Gaussians in sample space. Each gene is 
assigned to each Gaussian with a different probability.

 Graph-based. Too vast to cover here eg. minimal spanning trees.

 Ferromagnetic (Ising Potts). From statistical mechanics. Optimize a local cost / energy criterion (local interaction 
potential, Hamiltonian). Start with K different spins. Spin flip (not conserved) / exchange (conserved). Like spins tend to 
congregate together. Macroscopic scale single phase regions and clear interface emerge at low temperature after 
iterations (Metropolis algorithm).

 Some applications of transcriptome clustering

 Molecular signature for a biological system / state, eg. specific tissue at particular time

 Functional inference – co-cluster / expressed ⇔   co-functional

 Regulatory inference – co-cluster / expressed ⇔   co-regulated



FG: Functional / ontologic similarities and clustering configurations

 Recall example from Leonid's intro lecture,

Superparamagnetic clustering (Blatt, 
Wiseman & Domany, 1996)

Given toy pattern

Figures derived from: Blatt, M., S. Wiseman, and E. Domany.
"Superparamagnetic Clustering of Data." 
Phys Rev Lett 76, no. 18 (1996): 3251.



FG: Infering networks of biomolecular interactions

 3 prototypical questions

 Given measurements of N genes under M conditions of a biological system, (how 

accurately) can one infer inter-gene regulations / interactions?

 How will remainder gene profiles (thus system state) change when one gene is 

perturbed?

 What are the macroscopic states of this system? ... the asymptotic behavior of this 

system (when M is time)?

 Recall, iconic example 2 Arkin et al. Science, 1997. Time (lag) is vital component for decoupling, 

infering molecular interactions.

 Reality check

 First, characterize each gene by its M-sample profile

 Then use this characteristic representation to infer relationship between genes (like 

clustering)

 Algebraically, # algebraically independent gene profiles ≤ # samples ... in fact this is the 

kindergarten version of spectral clustering.



FG: Infering networks of biomolecular interactions

 Biomolecular interactions as (time in/dependent) dynamical systems.

 Discrete (eg. binary / boolean) – system of difference equations or logic table (boolean) 

  Continuous – system of ordinary differential equations

 Deterministic / Stochastic

 Asymptotic behaviour, d/dt X = 0, X is system state characterized by transcriptome

      Deterministic binary dynamical system necessarily cyclic

 D'haeseleer, Liang & Somogyi, From co-expression clustering to reverse engineering, Bioinformatics 2000

 Properties (believed to be) inherent to biological networks

 Feedback, Redundancy, Modularity

 Forward / Backward modeling

 Time is important input factor as time (lag) will be used to infer direction (arrow) of causality

 Forward: Given a dynamical system representation, evolve in time and observe / compute 

macroscopic states, asymptotic behaviour

 Backward (Reverse) engineering: Recall Arkin example.

Figure removed due to copyright reasons. Please see figure 1 in:
D'haeseleer, P., S. Liang, and R. Somogyi. "Genetic network inference: 
from co-expression clustering to reverse engineering." Bioinformatics
16, no. 8 (Aug, 2000): 707-26.





FG: Figures of merit in modeling interactions

 >1 models for 1 physical system. How to pick?

 Correlation vs. causality. As noted before, time (lags) will be used to infer direction of causality.

 Receiver operating characteristic (ROC) analysis

 Lessons from metabolic network models (flux balance analysis). Metabolic processes are quite well 

understood (ie. stochiometric parameters between metabolic agents are characterized)) – a natural 

test bed for modeling (Edwards & Palsson, Biotechnology & Bioengineering, 1998) 


