
6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology. 

6.034 Notes: Section 4.1 

Slide 4.1.1 
So far, we have talked a lot about building systems that have knowledge represented in them 
explicitly. One way to acquire that knowledge is to build it in by hand. But that can be time-
consuming and error prone. And many times, humans just don't have the relevant information 
available to them. 

For instance, you are all experts in visual object recognition. But it's unlikely that you could sit 
down and write a program that would do the job even remotely as well as you can. 

But, in lots of cases, when we don't have direct access to a formal description of a problem, we can 
learn something about it from examples. 

Slide 4.1.2 
The word "learning" has many different meanings. It is used, at least, to describe 

● memorizing something 
● learning facts through observation and exploration 
● development of motor and/or cognitive skills through practice 
● organization of new knowledge into general, effective representations 

Slide 4.1.3 
Herb Simon (an important historical figure in AI and in Economics) gave us this definition of 
learning: 

Learning denotes changes in the system that are adaptive in the sense that they enable the system 
to do the task or tasks drawn from the same population more efficiently and more effectively the 
next time. 

This is not entirely precise, but it gives us the idea that learning systems have to acquire some 
information from examples of a problem, and perform better because of it (so we wouldn't call a 
system that simply logs all the images it has ever seen a learning system, because, although, in 
some sense, it knows a lot, it can't take advantage of its knowledge). 



6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 4.1.4 
One of the most common kinds of learning is the acquisition of information with the goal of making 
predictions about the future. But what exactly gives us license to imagine we can predict the future? 
Lots of philosophers have thought about this problem. David Hume first framed the problem of 
induction as follows: 

● Piece of bread number 1 was nourishing when I ate it. 
● Piece of bread number 2 was nourishing when I ate it. 
● Piece of bread number 3 was nourishing when I ate it. 
● Piece of bread number 100 was nourishing when I ate it. 
● Therefore, all pieces of bread will be nourishing if I eat them. 

Slide 4.1.5 
And here, for no good reason, is a photo of David Hume's Tomb, just because I saw it once in 
Edinburgh. 

Slide 4.1.6 
When and why is it okay to apply inductive reasoning?? 

My favorite quote on the subject is the following, exerpted from Bertrand Russell's "On Induction": 
(see http://www.ditext.com/russell/rus6.html for the whole thing) 

If asked why we believe the sun will rise tomorrow, we shall naturally answer, 'Because it has 
always risen every day.' We have a firm belief that it will rise in the future, because it has risen in 
the past. 

The real question is: Do any number of cases of a law being fulfilled in the past afford evidence that 
it will be fulfilled in the future? 

It has been argued that we have reason to know the future will resemble the past, because what was 
the future has constantly become the past, and has always been found to resemble the past, so that 
we really have experience of the future, namely of times which were formerly future, which we may 
call past futures. But such an argument really begs the very question at issue. We have experience of 
past futures, but not of future futures, and the question is: Will future futures resemble past futures? 

We won't worry too much about this problem. If induction is not, somehow, justified, then we have 
no reason to get out of bed in the morning, let alone study machine learning! 



6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 4.1.7 
When viewed technically, there are lots of different kinds of machine learning problems. We'll just 
sketch them out here, so you get an idea of their range. 

Slide 4.1.8 
Supervised learning is the most common learning problem. Let's say you are given the weights and 
lengths of a bunch of individual salmon fish, and the weights and lengths of a bunch of individual 
tuna fish. The job of a supervised learning system would be to find a predictive rule that, given the 
weight and length of a fish, would predict whether it was a salmon or a tuna. 

Slide 4.1.9 
Another, somewhat less well-specified, learning problem is clustering. Now you're given the 
descriptions of a bunch of different individual animals (or stars, or documents) in terms of a set of 
features (weight, number of legs, presence of hair, etc), and your job is to divide them into groups, 
or possibly into a hierarchy of groups that "makes sense". What makes this different from 
supervised learning is that you're not told in advance what groups the animals should be put into; 
just that you should find a natural grouping. 

Slide 4.1.10 
Another learning problem, familiar to most of us, is learning motor skills, like riding a bike. We call 
this reinforcement learning. It's different from supervised learning because no-one explicitly tells 
you the right thing to do; you just have to try things and see what makes you fall over and what 
keeps you upright. 

Supervised learning is the most straightforward, prevalent, and well-studied version of the learning 
problem, so we are going to start with it, and spend most of our time on it. Most of the fundamental 
insights into machine learning can be seen in the supervised case. 



6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 4.1.11 
One way to think about learning is that you're trying to find the definition of a function, given a 
bunch of examples of its input and output. This might seem like a pretty narrow definition, but it 
actually covers a lot of cases. 

Slide 4.1.12 

● Learning how to pronounce words can be thought of as finding a function from letters to 
sounds. 
● Learning how to throw a ball can be thought of as finding a function from target locations to 
joint torques. 
● Learning to recognize handwritten characters can be thought of as finding a function from 
collections of image pixels to letters. 
● Learning to diagnose diseases can be thought of as finding a function from lab test results to 
disease categories. 

Slide 4.1.13 
The problem of learning a function from examples, is complicated. You can think of at least three 
different problems being involved: memory, averaging, and generalization. We'll look at each of 
these problems, by example. 

Slide 4.1.14 
We'll do this in the context of a silly example problem. Imagine that I'm trying predict whether my 
neighbor is going to drive into work tomorrow, so I can ask for a ride. Whether she drives into work 
seems to depend on the following attributes of the day: the temperature, what kind of precipitation is 
expected, the day of the week, whether she needs to shop on the way home, and what she's wearing. 



6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 4.1.15 
Okay. Let's say we observe our neighbor on three days, which are described in the table, which 
specifies the properties of the days and whether or not the neighbor walked or drove. 

Slide 4.1.16 
Now, we find ourselves on a snowy 19-degree Monday, when the neighbor is wearing casual clothes 
and going shopping. Do you think she's going to drive? 

Slide 4.1.17 
The standard answer in this case is "yes". This day is just like one of the ones we've seen before, and 
so it seems like a good bet to predict "yes." This is about the most rudimentary form of learning, 
which is just to memorize the things you've seen before. Still, it can help you do a better job in the 
future, if those same cases arise again. 

Slide 4.1.18 
Things are not always as easy as they were in the previous case. What if you get this set of data? 



6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 4.1.19 
Now, we ask you to predict what's going to happen. You've certainly seen this case before. But the 
problem is that it has had different answers. Our neighbor is not entirely reliable. 

Slide 4.1.20 
There are a couple of plausible strategies here. One would be to predict the majority outcome. The 
neighbor walked more times than she drove in this situation, so we might predict "walk". Another 
option would be to decline to commit to one prediction, but to generate a probability instead. You 
might answer that you think, with probability 5/7, she will walk. 

In this course, we'll give a treatment of machine learning that doesn't really rely on probability. But 
in many cases, the algorithms and concepts we talk about have probabilistic foundations, and there 
are many more sophisticated techniques that rely on a deep understanding of probability. So, if you 
like machine learning, take probability, and then take the machine learning class! 

Slide 4.1.21 
Here's another situation in which noise is an issue. This time, the noise has corrupted our 
descriptions of the situation (our thermometer is somewhat unreliable, as is our ability to assess the 
formality of the neighbor's clothing, given her peculiar taste). 

Slide 4.1.22 
In this case, we'd like to recognize that the day that we're asked to do the prediction for is apparently 
similar to cases we've seen before. It is ultimately impossible to tell whether this day is really 
different from those other days, or whether our sensors are just acting up. We'll just have to accept 
that uncertainty. 

So, we'll have to treat this as an instance of the more general problem of generalization. 



6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 4.1.23 
Take a good look at this data set. 

Slide 4.1.24 
Now, consider this day. It's 58 degrees and raining on a Monday. The neighbor is wearing casual 
clothing and doesn't need to shop. Will she walk or drive? 

The first thing to observe is that there's no obviously right answer. We have never seen this case 
before. We could just throw up our hands and decline to make a prediction. But ultimately, we have 
to decide whether or not to call the neighbor. So, we might fall back on some assumptions about the 
domain. We might assume, for instance, that there's a kind of smoothness property: similar 
situations will tend to have similar categories. 

You might plausibly make any of the following arguments: 

● She's going to walk because it's raining today and the only other time it rained, she walked. 
● She's going to drive because she has always driven on Mondays. 
● She's going to walk because she only drives if she is wearing formal clothes, or if the 
temperature is above 90 or below 20. 

The question of which one to choose is hard. It's one of the deep underlying problems of machine 
learning. We'll look at some examples to try to get more intuition, then come back and revisit it a bit 

more formally in the next section. 

Slide 4.1.25 
Imagine that you were given all these points, and you needed to guess a function of their x, y 
coordinates that would have one output for the red ones and a different output for the black ones. 



6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 4.1.26 
In this case, it seems like you could do pretty well by defining a line that separates the two classes. 

Slide 4.1.27 
Now, what if we have a slightly different configuration of points? We can't divide them 
conveniently with a line. 

Slide 4.1.28 
But this parabola-like curve seems like it might be a reasonable separator. 

Slide 4.1.29 
Now, what? This seems much trickier. There are at least a couple of reasonable kinds of answers. 



6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 4.1.30 
Here's an answer. It successfully separates the reds from the blacks. But there's something sort of 
unsatisfactory about it. Most people have an intuition that it's too complicated. 

Slide 4.1.31 
Here's another answer. It's not a perfect separator; it gets some of the points wrong. But it's prettier. 

In general, we will always be faced with making trade-offs between hypotheses that account for the 
data perfectly and hypotheses that are, in some sense, simple. There are some mathematical ways to 
understand these trade-offs; we'll avoid the math, but try to show you, intuitively, how they come up 
and what to do about them. 

Slide 4.1.32 
There are lots and lots of different kinds of learning algorithms. I want to show you cartoon versions 
of a couple of them first, and then we'll get down to the business of understanding them at a detailed 
algorithmic level. 

The learning methods differ both in terms of the kinds of hypotheses they work with and the 
algorithms they use to find a good hypothesis given the data. 

Slide 4.1.33 
Here's the most simple-minded of all learning algorithms (and my personal favorite (which might 
imply something about me!)). It's called nearest neighbor (or lazy learning). You simply remember 
all the examples you've ever seen. 



6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 4.1.34 
When someone asks you a question, you simply find the existing point that's nearest the one you 
were asked about, and return its class. 

Slide 4.1.35 
So, in this case, the nearest point to the query is red, so we'd return red. 

Slide 4.1.36 
Another well-loved learning algorithm makes hypotheses in the form of decision trees. In a decision 
tree, each node represents a question, and the arcs represent possible answers. We can use this 
decision tree to find out what prediction we should make in the drive/walk problem. 

Slide 4.1.37 
We'd start by asking what the current precipitation is. If it's snow, we just stop asking questions and 
drive. 



6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 4.1.38 
If there's no precipitation, then we have to ask what kind of clothes the neighbor is wearing. If 
they're formal, she'll drive. If not, we have to ask another question. 

Slide 4.1.39 
We can always continue asking and answering questions until we get to a leaf node of the tree; the 
leaf will always contain a prediction. 

Hypotheses like this are nice for a variety of reasons. One important one is that they're relatively 
easily interpretable by humans. So, in some cases, we run a learning algorithm on some data and 
then show the results to experts in the area (astronomers, physicians), and they find that the learning 
algorithm has found some regularities in their data that are of real interest to them. 

Slide 4.1.40 
Most people have heard of neural networks. They can represent complicated hypotheses in high-
dimensional continuous spaces. They are attractive as a computational model because they are 
composed of many small computing units. They were motiviated by the structure of neural systems 
in parts of the brain. Now it is understood that they are not an exact model of neural function, but 
they have proved to be useful from a purely practical perspective. 

Slide 4.1.41 
In neural networks, the individual units do a simple, fixed computation that combines the values 
coming into them with "weights" on the arcs. The learning process consists of adjusting the weights 
on the arcs in reaction to errors made by the network. 



6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 4.1.42 
Machine learning methods have been successfully fielded in a variety of applications, including 

● assessing loan credit risk 
● detecting credit card fraud 
● cataloging astronomical images 
● deciding which catalogs to send to your house 
● helping NBA coaches analyze players' performance 
● personalizing news and web searches 
● steering an autonomous car across the US 

Now, we'll roll up our sleeves, and see how all this is done. 

6.034 Notes: Section 4.2 

Slide 4.2.1 
A supervised learning problem is made up of a number of ingredients. The first is the data 
(sometimes called the training set). The data, D, is a set of m input-output pairs. We will write the 
ith element of the data set as xi, yi. In the context of our old running example, an xi would be a 
vector of values, one for each of the input features, and a yi would be an output value (walk or 
drive). 

Slide 4.2.2 
Each xi is a vector of n values. We'll write xi

j for the jth feature of the ith input-output pair. We'll 

consider different kinds of features. Sometimes we'll restrict ourselves to the case where the features 
are only 0s and 1s. Other times, we'll let them be choosen from a set of discrete elements (like 
"snow", "rain", "none"). And, still other times, we'll let them be real values, like temperature, or 
weight. 



6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 4.2.3 
Similarly, the output, yi, might be a boolean, a member of a discrete set, or a real value. For a 
particular problem, the yi will all be of a particular type. 

When yi is a boolean, or a member of a discrete set, we will call the problem a classification 
problem. When yi is real-valued, we call this a regression problem. 

Slide 4.2.4 
Now, the goal of learning will be to find a hypothesis, h, that does a good job of describing the 
relationship between the inputs and the outputs. So, a part of the problem specification is capital H, 
the hypothesis class. H is the set of possible hypotheses that we want our learning algorithm to 
choose from. It might be something like decision trees with 6 nodes, or lines in two-dimensional 
space, or neural networks with 3 components. 

Slide 4.2.5 
So, now we have a bunch of data, and a class of possible answers (hypotheses) and we're supposed 
to return the best one. In order to do that, we need to know exactly what is meant by "best". 

Slide 4.2.6 
There are typically two components to the notion of best. The hypothesis should do a good job of 
describing the data and it shouldn't be too complicated. 



6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 4.2.7 
Ideally, we would like to find a hypothesis h such that, for all data points i, h(xi) = yi. We will not 
always be able to (or maybe even want to) achieve this, so perhaps it will only be true for most of 
the data points, or the equality will be weakened into "not too far from". 

We can sometimes develop a measure of the "error" of a hypothesis to the data, written E(h, D). It 
might be the number of points that are miscategorized, for example. 

Slide 4.2.8 
Another issue is the complexity of the hypothesis. We can measure the complexity of a decision tree 
by the number of nodes it has, or a line by how bendy it is. In general, we'll define a measure of the 
complexity of hypotheses in H, C(h). 

Slide 4.2.9 
Why do we care about hypothesis complexity? We have an intuitive sense that, all things being 
equal, simpler hyptheses are better. Why is that? There are lots of statistical and philosophical and 
information-theoretic arguments in favor of simplicity. 

So, for now, let's just make recourse to William of Ockham, a 14th century Franciscan theologian, 
logician, and heretic. He is famous for "Ockham's Razor", or the principle of parsimony: "Non sunt 
multiplicanda entia praeter necessitatem." That is, "entities are not to be multiplied beyond 
necessity". People interpret this to mean that we should always adopt the simplest satisfactory 
hypothesis. 

Slide 4.2.10 
So, given a data set, D, a hypothesis class H, a goodness-of-fit function E, and a complexity measure 
C, our job will be to find the h in H that minimizes E(h, D) + alpha * C(h), where alpha is a number 
that we can vary to change how much we value fitting the data well versus having a complex 
hypothesis. 

We won't, in general, be able to do this efficiently, so, as usual, we'll have to make a lot of 
approximations and short-cuts. In fact, most learning algorithms aren't described exactly this way. 
But it's the underlying principle behind most of what we do. 



6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 4.2.11 
How can we go about finding the hypothesis with the least value of our criterion? We can certainly 
think of this as a search problem, although many learning algorithms don't seem to have the 
character of doing a search. 

For some carefully-chosen combinations of hypothesis classes and error criteria, we can calculate 
the optimal hypothesis directly. 

In other cases, the hypothesis space can be described with a vector of real-valued parameters, but for 
which we can't calculate the optimal values. A common practice for these problems is to do a kind 
of local hill-climbing search called gradient ascent (or descent). 

Finally, sometimes it is possible to construct a hypothesis iteratively, starting with a simple 
hypothesis and adding to it in order to make it fit the data better. These methods are often called 
"greedy", because they start by trying to pick the best simple hypothesis, and then make the best 
addition to it, etc. The result isn't optimal, but it is often very good. We will start by looking at some 
methods of this kind. 

Slide 4.2.12 
In the following sections, we speak about a set of problems in which the examples are described 
using vectors of binary variables. In such a space, it's convenient to characterize the hypotheses 
using propositional logic. We will talk about logic a lot in the last part of the course, but we just 
need to introduce some notation here. 

We'll use single letters to stand for variables that can be true or false (often we'll use 1 for "true" and 
0 for "false"). 

A "caret" B says that A and B both have to be true. 

A "vee" B says that either A or B (or both) have to be true. 

This thing that's sort of like a bent minus sign before a variable means that it has to be false. 

Slide 4.2.13 
Let's start with a very simple problem, in which all of the input features are Boolean (we'll represent 
them with 0's and 1's) and the desired output is also Boolean. 

Slide 4.2.14 
Our hypothesis class will be conjunctions of the input features. 



6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 4.2.15 
Here's an example data set. It is described using 4 features, which we'll call f1, f2, f3, and f4. 

Slide 4.2.16 
So, to understand the hypothesis space let's consider the hypothesis f1 ^ f3. It would be true on 

examples 2 and 3, and false on all the rest. 

Slide 4.2.17 
We will measure the error of our hypothesis as the number of examples it gets wrong. It marks one 
negative example as positive, and two positives as negative. So, the error of the hypothesis f1 ^ f3 on 

this data set would be 3. 

Slide 4.2.18 
Finally, we'll measure the complexity of our hypothesis by the number of features mentioned in the 
conjunction. So the hypothesis f1 ^ f3 has complexity 2. 

Furthermore, let's assume that alpha is set to be very small, so that our primary goal is to minimize 
error, but, errors being equal, we'd like to have the smallest conjunction. 



6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 4.2.19 
There's now an obvious way to proceed. We could do a general-purpose search in the space of 
hypotheses, looking for the one that minimizes the cost function. In this case, that might work out 
okay, since the problem is very small. But in general, we'll want to work in domains with many 
more features and much more complex hypothesis spaces, making general-purpose search 
infeasible. 

Slide 4.2.20 
Instead, we'll be greedy! (When I talk about this and other algorithms being greedy, I'll mean 
something slightly different than what we meant when we talked about "greedy search". That was a 
particular instance of a more general idea of greedy algorithm. In greedy algorithms, in general, we 
build up a solution to a complex problem by adding the piece to our solution that looks like it will 
help the most, based on a partial solution we already have. This will not, typically, result in an 
optimal solution, but it usually works out reasonably well, and is the only plausible option in many 
cases (because trying out all possible solutions would be much too expensive)). 

Slide 4.2.21 
We'll start out with our hypothesis set to True (that's the empty conjunction). Usually, it will make 
some errors. Our goal will be to add as few elements to the conjuction as necessary to make no 
errors. 

Slide 4.2.22 
Notice that, because we've started with the hypothesis equal to True, all of our errors are on negative 
examples. So, one greedy strategy would be to add the feature into our conjunction that rules out as 
many negative examples as possible without ruling out any positive examples. 



6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 4.2.23 
Here is pseudo-code for our algorithm. We start with N equal to all the negative examples and the 
hypothesis equal to true. Then we loop, adding conjuncts that rule out negative examples, until N is 
empty. 

Slide 4.2.24 
Inside the loop, we consider every feature that would not rule out any positive examples. We pick 
the one that rules out the most negative examples (here's where our greed kicks in), conjoin it to h, 
and remove the examples that it excludes from N. 

Slide 4.2.25 
Let's simulate the algorithm on our data. We start with N equal to x1, x3, and x5, which are the 
negative examples. And h starts as True. We'll cover all the examples that the hypothesis makes true 
pink. 

Slide 4.2.26 
Now, we consider all the the features that would not exclude any positive examples. Those are 
features f3 and f4. f3 would exclude 1 negative example; f4 would exclude 2. So we pick f4. 



6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 4.2.27 
Now we remove the examples from N that are ruled out by f4 and add f4 to h. 

Slide 4.2.28 
Now, based on the new N, n3 = 1 and n4 = 0. So we pick f3. 

Slide 4.2.29 
Because f3 rules out the last remaining negative example, we're done! 

Slide 4.2.30 
What if we have this data set? In which we just made one negative example into a positive? 



6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 4.2.31 
If we simulate the algorithm, we will arrive at the situation in which we still have elements in N, but 
there are no features left that do not exclude positive examples. So we're stuck. 

Slide 4.2.32 
What's going on? The problem is that this hypothesis class simply can't represent the data we have 
with no errors. So now we have a choice: we can accept the hypothesis we've got, or we can 
increase the size of the hypothesis class. In practice, which one you should do often depends on 
knowledge of the domain. But the fact is that pure conjunctions is a very limiting hypothesis class. 
So let's try something a little fancier. 

Slide 4.2.33 
You can kind of think of a conjunction as narrowing down on a small part of the space. And if all 
the positive examples can be corralled into one group this way, everything is fine. But for some 
concepts, it might be necessary to have multiple groups. 

This corresponds to a form of Boolean hypothesis that's fairly easy to think about: disjunctive 
normal form. Disjunctive normal form is kind of like CNF, only this time it has the form (A and B 
and C) or (D and E and F) 

As a hypothesis class, it's like finding multiple groups of positive examples within the negative 
space. 

Slide 4.2.34 
So, let's look at our harder data set and see if we can find a good hypothesis in DNF. 



6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 4.2.35 
It's pretty to see that one way to describe it is f3^f4 v f1^f2. Now let's look at an algorithm for finding 

it. 

Slide 4.2.36 
We'll let our hypothesis class be expressions in disjunctive normal form. What should our measure 
of complexity be? One reasonable choice is the total number of mentions of features (so f3^f4 v f1^f2 

would have complexity 4). 

Slide 4.2.37 
Now, searching in this space would be much harder than searching in the space of conjunctions. So 
we'll use another greedy algorithm. 

Slide 4.2.38 
We'll say a conjunction covers an example if all of the features mentioned in the conjunction are 
true in the example. 



6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 4.2.39 
Here's pseudocode for the algorithm. It has two main loops. The inner loop constructs a conjunction 
(much like our previous algorithm). The outer loop constructs multiple conjunctions and disjoins 
them. 

The idea is that each disjunct will cover or account for some subset of the positive examples. So in 
the outer loop, we make a conjunction that includes some positive examples and no negative 
examples, and add it to our hypothesis. We keep doing that until no more positive examples remain 
to be covered. 

Slide 4.2.40 
We also haven't said how to pick which feature to add to r. It's trickier here, because we can't restrict 
our attention to features that allow us to cover all possible examples. Here's one heuristic for 
selecting which feature to add next. 

Slide 4.2.41 
Let vj be n+

j / n-
j, where n+

j is the total number of so-far uncovered positive examples that are 

covered by rule r ^ fj and n-
j is the total number of thus-far not-ruled-out negative examples that are 

covered by rule r ^ fj. The intuition here is that we'd like to add features that cover a lot of positive 

examples and exclude a lot of negative examples, because that's our overall goal. 

There's one additional problem about what to do when n- is 0. In that case, this is a really good 
feature, because it covers positives and doesn't admit any negatives. We'll prefer features with zero 
in the denominator over all others; if we have multiple such features, we'll prefer ones with bigger 
numerator. To make this fit easily into our framework, if the denominator is zero, we just return as a 
score 1 million times the numerator. 

Slide 4.2.42 
Then we can replace this line in the code with one that says: Select the feature fj with the highest 

value of vj to add to r. And now we have a whole algorithm. 



6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 4.2.43 
Let's simulate it on our data set. Here's a trace of what happens. It's important to remember that 
when we compute vj, we consider only positive and negative examples not covered so far. 

We start with h = false, and so our current hypothesis doesn't make any examples true. 

Slide 4.2.44 
After the first iteration of the inner loop, our hypothesis covers the examples shown in pink. There's 
still another positive example to get. 

Slide 4.2.45 
After another iteration, we add a new rule, which covers the example shown in blue. And we're 
done. 

6.034 Notes: Section 4.3 



6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 4.3.1 
Once our learning algorithm has generated a hypothesis, we'd like to be able to estimate how well 
it is going to work out in the "real world". What is the real world? Well, we can't expect the 
hypothesis to perform well in every possible world; we can expect it to peform well in the world 
that generated the data that was used to train it. 

Slide 4.3.2 
Just by looking at the training data, we can't tell how well the hypothesis will work on unseen data. 
We have constructed the hypothesis so that it has zero error on the training data. But unless we're 
wildly optimistic, we can't expect to do so well on new data. 

Slide 4.3.3 
The only way to know how well the hypothesis will do on new data is to save some of the original 
data in a set called the "validation set" or the "test set". The data in the validation set are not used 
during training. Instead, they are "held out" until the hypothesis has been derived. Then, we can test 
the hypothesis on the validation set and see what percentage of the cases it gets wrong. This is called 
"test set error". 

Slide 4.3.4 
Sometimes you'd like to know how well a particular learning algorithm is working, rather than 
evaluating a single hypothesis it may have produced. Running the algorithm just once and 
evaluating its hypothesis only gives you one sample of its behavior, and it might be hard to tell how 
well it really works from just one sample. 

If you have lots of data, you can divide it up into batches, and use half of your individual batches to 
train new hypotheses and the other half of them to evaluate the hypotheses. But you rarely have 
enough data to be able to do this. 



6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 4.3.5 
One solution is called cross-validation. You divide your data up into some number (let's say 10 for 
now) of chunks. You start by feeding chunks 1 through 9 to your learner and evaluating the resulting 
hypothesis using chunk 10. 

Now, you feed all but chunk 9 into the learner and evaluate the resulting hypotheses on chunk 9. 
And so on. 

Slide 4.3.6 
At the end of this process, you will have run the learning algorithm 10 times, getting 10 different 
hypotheses, and tested each of the hypotheses on a different test set. You can now average the error 
results from each of these trials to get an aggregate picture of how well your learning algorithm 
performs. (For those of you who might be statistically sophisticated, you have to be careful with 
these statistics because the samples are not independent.) Remember that this is a method for 
comparing algorithms on a data set, not for evaluating the quality of a particular hypothesis. 

Slide 4.3.7 
One interesting thing to see is how well the learning process works as a function of how much data 
is available to it. I made a learning curve by secretly picking a target function to generate the data, 
drawing input points uniformly at random and generating their associated y using my secret 
function. First I generated 10 points and trained a hypothesis on them, then evaluated it. Then I did 
it for 20 points, and so on. 

This is the learning curve for a fairly simply function: f344 ^ f991 v f103 ^ f775, in a domain with 1000 

features. The x axis is the amount of training data. The y axis is the number of errors made by the 
resulting hypothesis, on a test set of data that is drawn uniformly at random, as a percentage of the 
total size of the test set. 

It takes suprisingly few samples before we find the correct hypothesis. With 1000 features, there are 
21000 possible examples. We are getting the correct hypothesis after seeing a tiny fraction of the 
whole space. 

Slide 4.3.8 
Now, let's look at a much more complex target function. It's (f1^f2^f3^f4) v (f5^f6^f7^f8) v 

(f9^f10^f11^f12) v (f13^f14^f15^f16) v (f17^f18^f19^f20) v (f21^f22^f23^f24). It takes a lot more data to 

learn. Why is that? 



6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 4.3.9 
First, it's important to remember that, at every point in the graph, the learning algorithm has found a 
hypothesis that gets all of the training data correct. 

Slide 4.3.10 
When we have just a little bit of data, there are many possible functions that agree with it all. How 
does our algorithm choose which answer to give? It tries to give a simple one. So, we would say that 
the algorithm has a "bias" in favor of simple hypotheses. 

Slide 4.3.11 
So, when the target hypothesis is simple, we discover it quickly (the other simple hypotheses are 
ruled out with just a little bit of data, because there are so few of them). 

Slide 4.3.12 
If we thought our problems were going to have complex answers, then we might think about biasing 
our algorithm to prefer more complex answers. But then we start to see the wisdom of Ockham. 
There are lots more complex hypotheses than there are simple ones. So there will be huge numbers 
of complex hypotheses that agree with the data and no basis to choose among them, unless we know 
something about the domain that generated our data (maybe some features are thought, in advance, 
to be more likely to have an influence on the outcome, for example). 



6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 4.3.13 
There is, in fact, a theorem in machine learning called the "No Free Lunch" theorem. It basically 
states that, unless you know something about the process that generated your data, any hypothesis 
that agrees with all the data you've seen so far is as good a guess as any other one. 

The picture will get a bit more complicated when we look at data that are noisy. 

Slide 4.3.14 
It is actually very rare to encounter a machine learning problem in which there is a deterministic 
function that accounts for y's dependence on x in all cases. It is much more typical to imagine that 
the process that generates the x's and y's is probabilistic, possibly corrupting measurements of the 
features, or simply sometimes making different decisions in the same circumstances. 

Slide 4.3.15 
We can easily handle noise in the framework we have introduced. We left the door open for it, so to 
speak, in our formulation of the problem we were trying to solve. We want to find a hypothesis h 
that minimizes error plus complexity. When there's noise, we'll have to accept that our hypothesis 
will probably have non-zero error on the training set; and we'll have to be very careful about how we 
weight these two criteria, as we will see. 

Slide 4.3.16 
We can use our DNF learning algorithm almost unchanged. But, instead of requiring each rule to 
exclude all negative examples, and requiring the whole hypothesis to cover all positive examples, 
we will only require them to cover some percentage of them. Here is the pseudocode, with the 
changes highlighted in blue. 



6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 4.3.17 
We also have to add further conditions for stopping both loops. If there is no feature that can be 
added that reduces the size of N, then the inner loop must terminate. If the inner loop cannot 
generate a rule that reduces the size of P, then the outer loop must terminate and fail. 

Slide 4.3.18 
Now we have a new parameter, epsilon, which is the percentage of examples we're allowed to get 
wrong. (Well, we'll actually get more wrong, because each disjunct is allowed to get epsilon percent 
of the negatives wrong). 

Slide 4.3.19 
Although it is not exactly equivalent to manipulating the alpha parameter in our ideal criterion, it is 
a way to trade off accuracy for complexity. The higher the epsilon, the simpler and more error-prone 
our hypothesis. 

Slide 4.3.20 
If epsilon is small and the data is noisy, the algorithm may fail to find an acceptable hypothesis. 



6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 4.3.21 
Let's see what happens in a moderately noisy domain. This curve shows the problem of learning our 
easy DNF function in a domain with 100 features, on a training set of size 100. The data has 10 
percent noise, which means that, in 10 percent of the cases, we expect the output set to be the 
opposite of the one specified by the target function. The x axis is epsilon, ranging from 0 to 1. At 
setting 0, it is the same as our original algorithm. At setting 1, it's willing to make an arbitrary 
number of errors, and will always return the hypothesis False. The y axis is percentage error on a 
freshly drawn set of testing data. Note that, because there is 10 percent error in the data (training as 
well as testing), our very best hope is to generate a hypothesis that has 10 percent error on average 
on testing data. 

Slide 4.3.22 
We get the best performance for a value of epsilon that's between 0 and 1. What's the matter with 
setting it to some value near 0? We run into the problem of overfitting. In overfitting, we work very 
hard to reduce the error of our hypothesis on the training set. But we may have spent a lot of effort 
modeling the noise in the data, and perform poorly on the test set. That's what is happening here. It 
is said, in this case, that our algorithm has high variance. Another way to think about the problem is 
to see that if we get another noisy data set generated by the same target function, we are likely to get 
a wildly different answer. By turning epsilon up a bit, we generate simpler hypotheses that are not 
so susceptible to variations in the data set, and so can get better generalization performance. 

Slide 4.3.23 
Of course, turning epsilon up too high will keep us from building a hypothesis of sufficient 
complexity. Then we'd do poorly because we are unable to even represent the right answer. It is 
said, in this case, that our algorithm has high bias. 

Slide 4.3.24 
It's also instructive to see how the complexity of the resulting hypothesis varies as a function of 
epsilon. When epsilon is 0, we are asking for a hypothesis with zero error on the training set. We are 
able to find one, but it's very complex (31 literals). This is clearly a high variance situation; that 
hypothesis is completely influenced by the particular training set and would change radically on a 
newly drawn training set (and therefore, have high error on a testing set, as we saw on the previous 
slide). 



6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 4.3.25 
As epsilon increases, we rapidly go down to a complexity of 1, which is incapable of representing 
the target hypothesis. The low-point in the error curve was at epsilon = 0.2, which has a complexity 
of 4 here. And it's no coincidence that the target concept also has a complexity of 4. 

Slide 4.3.26 
This problem is called the bias/variance trade-off. Because this is such an important idea in machine 
learning, let's look at it one more time in the context of our old pictures of dots on the plane. 

Slide 4.3.27 
Here's some noisy data. 


If we separate it with a line, we have low complexity, but lots of error. 


Slide 4.3.28 
If we separate it with a squiggly snake, we can reduce the error but add a lot of complexity. 



6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 4.3.29 
So, what, exactly, is so bad about complexity? Well, let's draw a bunch more points from the same 
underlying distribution and add them to our data set. 

Slide 4.3.30 
We wouldn't need to change our line hypothesis very much to do our best to accomodate them. 

Slide 4.3.31 
But we'd have to change the snake hypothesis radically. This is what it means to have high variance. 

The line, although it was making mistakes on the original data set, performs better on unseen data. 

Slide 4.3.32 
In practice, it is common to allow hypotheses of increased complexity as the amount of available 
training data increases. So, in this situation, we might feel justified in choosing a moderately 
complex hypothesis. 



6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 4.3.33 
So, given a data set, how should we choose epsilon? This is where cross-validation can come in 
handy. You select a number of different values of epsilon, and use cross-validation to estimate the 
error when using that epsilon. Then, you pick the epsilon value with the least estimated error, and 
train your learning algorithm with all the available data using that value of epsilon. The resulting 
hypothesis is probably the best you can do (given what you know). 

Slide 4.3.34 
So, is this algorithm actually good for anything? Yes. There are lots of domains that can be encoded 
as vectors of binary features with a binary classification. Here are some examples. 

Slide 4.3.35 
Congressional voting: given a congressperson's voting record, where the features are the individual's 
votes on various bills, can you predict whether they are a republican or democrat? 

Slide 4.3.36 
Gene splicing: given a sequence of bases (A, C, G, or T), predict whether the mid-point is a splice 
junction between a coding segment of DNA and a non-coding segment. In order to apply our 
algorithms to this problem, we would have to change the representation somewhat. It would be easy 
to take each base and represent it as two binary values; A is 00, C is 01, G is 10 and T is 11. Even 
though it seems inefficient, for learning purposes, it is often better to represent discrete elements 
using a unary code; so A would be 0001, C would be 0010, G would be 0100 and T would be 1000. 



6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 4.3.37 
Spam filtering: is this email message spam? Represent a document using a really big feature space, 
with one feature for each possible word in the dictionary (leaving out some very common ones, like 
"a" and "the"). The feature for a word has value 1 if that word exists in the document and 0 
otherwise. 

Slide 4.3.38 
Marketing: is this grocery-store customer likely to buy beer? Represent a person's buying history 
using a big feature space, with one feature for each product in the supermarket. The feature for a 
product has value 1 if the person has ever bought that product and 0 otherwise. 

Slide 4.3.39 
Just for fun, we ran the DNF learning algorithm on the congressional voting data. A lot of the 
records had missing data (those congress folks are always out in the hallways talking instead of in 
there voting); we just deleted those records (though in a machine learning class we would study 
better ways of handling missing data items). There were 232 training examples, each of which had 
15 features. The features were the individuals' votes on these bills (unfortunately, we don't know any 
details about the bills, but the names are evocative). 

Slide 4.3.40 
We are trying to predict whether a person is a Republican, based on their voting history during part 
of 1984. Here is a plot of the training set error as a function of epsilon. What I should really do is 
cross-validation, but instead I just ran the algorithm on the whole data set and I'm plotting the error 
on the training set. 

Something sort of weird is going on. Training set error should get smaller as epsilon decreases. Why 
do we have it going up for epsilon equal zero? It's because of the greediness of our algorithm. We're 
not actually getting the best hypothesis in that case. 



6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 4.3.41 
Here's the hypothesis we get at this point. It's kind of complicated (but mentions a lot of Republican 
things, like aid to the Nicaraguan contras and the mx-missile). 

Slide 4.3.42 
Here's a simpler hypothesis (with slightly worse error). 

Slide 4.3.43 
And here's the best hypothesis of complexity 1 for predicting whether someone is a Republican: did 
they vote "yes" for the MX missile? 

And, just because you're all too young to remember this, a little history. The MX missile, also called 
the "Peacekeeper" was our last big nuclear missile project. It's 71 feet long, with 10 warheads, and 
launched from trains. It was politically very contentious. Congress killed it at least twice before it 
was finally approved. 


