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Why build Models?


• To predict (identify) something 

• Diagnosis 

• Best therapy 

• Prognosis 

• Cost 

• To understand something 

• Structure of model may correspond to structure of reality 



Where do models come from?


•

•

•


• Assumes uniform priors over all hypotheses in the space 

• A-priori knowledge, expressed in 

• Structure of the space of models 

• 
• Adjustments to observed data 

Pure induction from data 
Even so, need some “space” of models to explore 
Maximum A-posteriori Probability (MAP) 

• Maximum Likelihood (ML)




An Example

(Russell & Norvig)


•	 Surprise Candy Corp. makes two flavors of candy: cherry and lime


•	 Both flavors come in the same opaque wrapper 

• Candy is sold in large bags, which have one of the following 

distributions of flavors, but are visually indistinguishable:


•	 h1: 100% cherry 

•	 h2: 75% cherry, 25% lime 

•	 h3: 50% cherry, 50% lime 

•	 h4: 25% cherry, 75% lime 

•	 h5: 100% lime 

•	 Relative prevalence of these types of bags is (.1, .2, .4, .2, .1) 

•	 As we eat our way through a bag of candy, predict the flavor of 
the next piece; actually a probability distribution. 



Bayesian Learning


• Calculate the probability of each hypothesis given the data 

• To predict the probability distribution over an unknown quantity, X, 


• If the observations d are independent, then


• E.g., suppose the first 10 candies we taste are all lime




h1: 100% cherry 

h2: 75% cherry, 25% lime 

h3: 50% cherry, 50% lime 
Learning Hypotheses

h4: 25% cherry, 75% lime 

h5: 100% lime 
and Predicting from Them 

• (a) probabilities of hi after k lime candies; (b) prob. of next lime 

• 
Image by MIT OpenCourseWare.

MAP prediction: predict just from most probable hypothesis


• After 3 limes, h5 is most probable, hence we predict lime 

• Even though, by (b), it’s only 80% probable 
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Observations


•	 Bayesian approach asks for prior probabilities on hypotheses! 

•	 Natural way to encode bias against complex hypotheses: make 
their prior probability very low 

•	 Choosing hMAP to maximize 

•	 is equivalent to minimizing 

•	 but as we know that entropy is a measure of information, 
these two terms are 

•	 # of bits needed to describe the data given hypothesis


•	 # bits needed to specify the hypothesis 

•	 Thus, MAP learning chooses the hypothesis that maximizes 
compression of the data; Minimum Description Length principle 

•	 Regularization is similar to 2nd term—penalty for complexity


•	 Assuming uniform priors on hypotheses makes MAP yield hML, the 
maximum likelihood hypothesis, which maximizes 



Learning More Complex Hypotheses


•	 Input: 

•	 Set of cases, each of which includes 

•	 numerous features: categorical labels, ordinals, continuous 

•	 these correspond to the independent variables 

•	 Output: 

•	 For each case, a result, prediction, classification, etc.,

corresponding to the dependent variable


•	 In regression problems, a continuous output 

• a designated feature the model tries to predict 

•	 In classification problems, a discrete output 

• the category to which the case is assigned 

•	 Task: learn function f(input)=output 

•	 that minimizes some measure of error 



              

Linear Regression


• General form of the function 

• For each case:


• Find to minimize some function of over all 

• e.g., mean squared error: 



Logistic Regression


• Logistic function: 

• E.g, how risk factors contribute to probability of death

    are the log odds ratios •



More sophisticated models


•	 Nearest Neighbor Methods 

•	 Classification Trees 

•	 Artificial Neural Nets 

•	 Support Vector Machines 

•	 Bayes Networks (much on this, later) 

•	 Rough Sets, Fuzzy Sets, etc.  (see 6.873/HST951 or other ML 
classes) 



How?


•	 Given: pile of training data, all cases labeled with gold standard 
outcome 

•	 Learn “best” model 

•	 Gather new test data, also all labeled with outcomes 

•	 Test performance of model on new test data 

•	 Simple, no? 



Simplest Example


• Relationship 
between a 
diagnostic 
conclusion and 
a diagnostic 
test 

Test 
Positive 

Test 
Negative 

Disease 
Present 

True 
Positive 

False 
Negative TP+FN 

Disease 
Absent 

False 
Positive 

True 
Negative FP+TN 

TP+FP FN+TN 



Definitions

Test 

Positive 
Test 

Negative 

Disease 
Present 

True 
Positive 

False 
Negative 

TP+FN 

Disease 
Absent 

False 
Positive 

True 
Negative 

FP+TN 

TP+FP FN+TN 

Sensitivity (true positive rate): TP/(TP+FN)



 False negative rate: 1-Sensitivity = FN/(TP+FN)


Specificity (true negative rate): TN/(FP+TN)



 False positive rate: 1-Specificity = FP/(FP+TN)


Positive Predictive Value (PPV): TP/(TP+FP)


Negative Predictive Value (NPV): TN/(FN+TN)




Test Thresholds


+ 

-

FPFN 

T




Wonderful Test


+ 

-

FPFN 

T




Test Thresholds Change Trade-off 

between Sensitivity and Specificity


+ 

-

FPFN 

T




Receiver Operator Characteristic 
TPR 

(sensitivity) (ROC) Curve 

0 FPR (1-specificity)1 
0 

1 

T 



TPR What makes a better test?


0 FPR (1-specificity)1 

(sensitivity) 

0 

1 

worthless 

superb 

OK 



Need to explore many models


• Remember: 

• training set => model 

• model + test set => measure of performance 

• But 

• How do we choose the best family of models? 

• How do we choose the important features? 

• Models may have structural parameters 

• Number of hidden units in ANN 

• Max number of parents in Bayes Net 

• Parameters (like the betas in LR), and meta-parameters 

• Not legitimate to “try all” and report the best !!!!!!!!!!!!!!!!!!




The Lady Tasting Tea 

•	 R.A. Fisher & the Lady 

•	 B. Muriel Bristol claimed she prefers tea added to milk rather than milk 
added to tea 

•	 Fisher was skeptical that she could distinguish 

•	 Possible resolutions 

•	 Reason about the chemistry of tea and milk 

•	 Milk first: a little tea interacts with a lot of milk 

•	 Tea first: vice versa 

•	 Perform a “clinical trial” 

•	 Ask her to determine order for a series of test cups 

•	 Calculate probability that her answers could have occurred by chance 
guessing; if small, she “wins” 

•	 ... Fisher’s Exact Test 

•	 Significance testing 

• Reject the null hypothesis (that it happened by chance) if its 

probability is < 0.1, 0.05, 0.01, 0.001, ..., 0.000001, ..., ????




How to deal with multiple testing


•	 Suppose Ms. Bristol had tried this test 100 times, and passed 
once.Would you be convinced of her ability to distinguish? 

•	 Bonferroni correction: for n trials, insist on a p-value that is 1/n of 
what you would demand for a single trial 



Cross-validation

Training Data “Real” Training Data


Validation Data 

Test Data


• Any number of times 

• Train on some subset of the training data 

• Test on the remainder, called the validation set


• Choose best meta-parameters 

• Train, with those meta-parameters, on all training data


• Test on Test data, once! 



Aliferis lessons (part)


• Overfitting 

• bias, variance, noise 

• O = optimal possible model over all possible learners 

• L = best model learnable by this learner 

• A = actual model learned 

• Bias = O - L (limitation of learning method or target model) 

• Variance = L - A (error due to sampling of training cases)


• Compare against learning from randomly permuted data


• Curse of dimensionality 

• Feature selection 

• Dimensionality reduction 



Causality


•	 Suppes, 1950’s 

•	 Statistical association 

•	 Temporal succession 

•	 No confounders (!) 

•	 hidden variables 
•	 A node, X, is conditionally independent 

of all other nodes in the network given 
its Markov blanket: its parents, Ui, 
children,Yi, and children’s parents, Zi. 

X 

Y1 Yn 

UnU1 

Z1 Zn 



Using MIMIC data to build predictive models


• Mortality • Caleb Hug’s 2009 PhD thesis: 
http://dspace.mit.edu/handle/1721.1/46690 

• Comparison to SAPS II 

• Daily Acuity Scores 

• Real-time Acuity Scores 

• Other outcomes 

• Good 

• Weaning from Ventilator 

• Weaning from Intra-Aortic Balloon Pump 

• Weaning from Vasopressors 

• Bad 

• Septic shock 

• Hypotension 

• Acute kidney injury 

http://dspace.mit.edu/handle/1721.1/46690
http://dspace.mit.edu/handle/1721.1/46690
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Figure 3-1: Observation frequency histograms

Cleaning the data—half the research time


• Missing values 

• Some values are not measured for some clinical situations 

• Failures in data capture process 

• Episodically measured variables 

• Unclear/undefined clinical states 
0 10 20 30 40 0 5 10 15 20 25 30 

• Imprecise timing of meds, ... Hours Between HCT Measurements Hours Between Art_BE Measurements 

• Partially measured i/o 

• Proxies: e.g., which ICU⇒what disease 

• Derived variables: integrals, slopes, ranges, frequencies, etc. 

• Transformed variables: square root, log, etc. 

• Select subset of data with enough data! 
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Figure by Hug, Caleb Wayne. "Detecting Hazardous Intensive Care Patient
Episodes Using Real-time Mortality Models." Massachusetts Institute of Technology, 2009.
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Figure 3-2: Histograms for demographic information
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Figure 3-4: SAPS II Variables (cont)
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Figure by Hug, Caleb Wayne. "Detecting Hazardous Intensive Care Patient
Episodes Using Real-time Mortality Models." Massachusetts Institute of Technology, 2009.
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a given patient. Some patients, for example, are recorded as having died over one
year after their first ICU discharge. To limit such cases, one might define death as
“died within the ICU or within 30 days of discharge”. This limit marks a patient as
alive if he or she is still in the hospital 30 days after ICU discharge. If the patient
is not in the hospital at this point, the hospital discharge status of the patient is
used to indicate mortality: if the patient was discharged alive (censored) they are
marked as survived; otherwise they are marked as expired. Figure 3-6 illustrates
the change in mortality rate as patients stay in the ICU for longer periods of time.
This figure includes both hospital mortality (i.e., the patient died at any point during
any recorded visit) and the within-30-days-of-ICU-discharge mortality. As the figure
shows, the two mortality rates track each other closely for the first several days.
However, it is clear that patients who stay in the ICU longer are more apt to remain
in the hospital for a significant period of time before dying. For the remainder of this
work, references to “mortality” indicate death in the ICU or within the following 30
days.

Figure 3-6: Patient counts versus the number of days spent in the ICU (left) and
mortality rate versus the number of days spent in the ICU (right). For each patient,
only the first ICU stay of the first recorded hospital visit is considered. “ICU + 30 day
mortality” excludes deaths that occur after long post-ICU discharge hospitalizations.
If a patient leaves the hospital alive within this 30-day period, they are assumed to
have survived.

3.5. FINAL DATASET 51

Table 3.14: Final Dataset: Partial Patient Exclusions

Drop Rule Number of Rows
In the ICU for longer than seven days 728739
Received limited treatment, including 198942

CMO (“comfort measures only”)
DNR (“do not resuscitate”)
DNI (“do not intubate”)
“no CPR” or “other code”

Received hemodialysis or hemofiltration 139561

The motivation for these rules generally follows the reasoning for excluding entire
patients. For example, as Figure 3-6 indicates by plotting the mortality rate versus
the number of days spent in the ICU, most patients leave the ICU within seven days of
admission. For patients that do not leave in this 7-day window, the 30-day mortality
rate starts to noticeably decrease as caregivers are able to successfully prolong the
patient’s life while the patient remains in a compromised state often dependent on
various interventions.

3.5.2 Dataset Summary

The final dataset — after applying all of the exclusions mentioned above — is sum-
marized in Table 3.15. In addition, Appendix B lists the 438 individual variables
with brief summary statistics. Figure 3-7 provides an updated version of Figure 3-6
for the final dataset.
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Table 3.15: Preprocessed Data 

Number of Patients 10,066

Number of Rows 1,044,982

Number of Features 438


Figure by Hug, Caleb Wayne. "Detecting Hazardous Intensive Care Patient
Episodes Using Real-time Mortality Models." Massachusetts Institute of Technology, 2009.



4.3. OTHER SEVERITY OF ILLNESS SCORES 63

SAPS II


Table 4.1: SAPS II Variables 
Variable Max Points 
Age 18 
Heart rate 11 
Systolic BP 13 
Body temperature 3 
PaO2:FiO2 (if ventilated or continuous 11 

positive airway pressure) 
Urinary output 11 
Serum urea nitrogen level 10 
WBC count 12 
Serum potassium 3 
Serum sodium level 5 
Serum bicarbonate level 6 
Bilirubin level 9 
Glasgow Coma Scorea 26 
Chronic diseases 17 
Type of admission 8 

aIf the patient is sedated, the estimated GCS prior to 
sedation 

Figure by Hug, Caleb Wayne. "Detecting Hazardous Intensive Care Patient
Episodes Using Real-time Mortality Models." Massachusetts Institute of Technology, 2009.
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Figure 5-1: SDAS model selection. Sensitivity to number of covariates on each cross-
validation fold. The covariate(s) from the simplest model are marked on the training
curves.
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Figure 5-1: SDAS model selection. Sensitivity to number of covariates on each cross-
validation fold. The covariate(s) from the simplest model are marked on the training
curves.

5.2. DAILY ACUITY SCORES 69

probability of mortality (positive correlation) while a negative coefficient means less
risk of mortality (negative correlation).

Model 5.1 includes a number of interesting covariates. By examining the Wald Z
scores, however, it appears that the model can likely be improved. For example, the
contributions from the largest length of stay fluid balance (LOSBal max, Z = 3.94)
and the largest 24 hour fluid balance (Bal24 max, Z = −3.68) may largely counteract
each other and the model may benefit from removing at least one of these variables
and possibly replacing it with an input variable (a mean hourly output for the day,
OutputB 60 mean sqrt, is already included). Similarly, the meaningfulness of the
pressD01 sd sq variable (that is, the squared standard deviation of the points marked
1 following the first pressor infusion and marked 0 before any pressors) is questionable
as it decreases risk for patients who have a pressor started in the middle of their first
day, but increases risk for patients who receive pressors early or late on their first day.

Examining all five folds from Figure 5-1, it is clear that there was negligible impact
on the validation performance by reducing the number of covariates to about 25.
Considering this, I took the top 25 covariates from the models for cross-validation
folds 1, 2, 3, and 5 (excluding fold 4) and created a model using these covariates.
By performing backward elimination one last time on this model a final model was
selected. As done with each cross-validation fold in Figure 5-1, a plot of performance
versus the number of covariates in a given model was created. This plot is shown in
Figure 5-2.

Figure 5-2: SDAS model selection (all development data)

The models in Figure 5-2 indicate that most of the performance was captured
with about 35 inputs. This model was chosen for additional refinement. Upon exam-
ination, it was found to contain a number of pressor-related

Training models—5-fold cross validation
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Figure by Hug, Caleb Wayne. "Detecting Hazardous Intensive Care Patient
Episodes Using Real-time Mortality Models." Massachusetts Institute of Technology, 2009.
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72 CHAPTER 5. MORTALITY MODELSMany univariate analyses

Model 5.1 SDAS Model for Fold 2 with 30 Covariates Model 5.2 Final SDAS model 

Obs Max Deriv Model L.R. d.f. P C Dxy Obs Max Deriv Model L.R. 

20172 1e-09 5415.11 30 0 0.893 0.785 20130 3e-10 5619.28 

Gamma Tau-a R2 Brier 
0.787 0.176 0.439 0.076 

Coef S.E. Wald Z P 
INR_mean_i -1.795e+00 1.423e-01 -12.61 0.0000 
GCS_max_sq -7.485e-03 6.000e-04 -12.47 0.0000 
OutputB_60_mean_sqrt -6.561e-02 6.885e-03 -9.53 0.0000 
pacemkr_max -1.084e+00 1.183e-01 -9.16 0.0000 
svCSRU_max -9.516e-01 1.208e-01 -7.88 0.0000 
GCSrdv_mean -1.138e-01 1.528e-02 -7.45 0.0000 
pressD01_mean_am -2.774e+00 3.893e-01 -7.13 0.0000 
Platelets_Slope_1680_min -5.493e+00 8.615e-01 -6.38 0.0000 
pressD01_sd_sq -5.085e+00 8.678e-01 -5.86 0.0000 
sedatives_mean_sq -4.375e-01 8.455e-02 -5.17 0.0000 
Bal24_max -4.493e-05 1.222e-05 -3.68 0.0002 
CV_HRrng_max -3.267e-03 1.083e-03 -3.02 0.0026 
Intercept 4.292e-01 4.085e-01 1.05 0.2934 
Milrinone_perKg_min_sq 3.523e+00 1.113e+00 3.17 0.0015 
LOSBal_max 2.247e-05 5.703e-06 3.94 0.0001 
hrmVA_max 3.410e-01 6.767e-02 5.04 0.0000 
MBPm.pr_min_am 1.904e+00 3.711e-01 5.13 0.0000 
Mg_min_sq 1.067e-01 1.798e-02 5.93 0.0000 
beta.Blocking_agent_mean_lam 2.418e-01 3.955e-02 6.11 0.0000 
Na_mean_am 5.214e-02 8.415e-03 6.20 0.0000 
mechVent_mean_sq 7.183e-01 1.047e-01 6.86 0.0000 
RESP_mean_sq 9.226e-04 1.293e-04 7.13 0.0000 
Platelets_mean_i 2.512e+01 3.512e+00 7.15 0.0000 
Lasix_max_lam 2.550e-01 3.457e-02 7.38 0.0000 
CO2_mean_i 2.038e+01 2.741e+00 7.43 0.0000 
jaundiceSkin_mean_la 1.523e-01 2.014e-02 7.56 0.0000 
hospTime_min_sqrt 6.860e-03 7.939e-04 8.64 0.0000 
pressorSum.std_mean_sqrt 7.758e-01 7.225e-02 10.74 0.0000 
SpO2.oor30.t_mean_sqrt 4.929e-01 4.095e-02 12.04 0.0000 
BUNtoCr_min_sqrt 2.867e-01 2.323e-02 12.34 0.0000 
Age_min_sq 2.258e-04 1.450e-05 15.57 0.0000 

Gamma 
0.798 

Tau-a 
0.177 

R2 
0.456 

GCS_max_sq 
INR_mean_i 
pacemkr_max 
svCSRU_max 
RikerSAS_mean 
Platelets_Slope_1680_min 
urineByHr_mean_sqrt 
GCSrdv_mean 
GCSrng_min_am 
pressD01_mean_am 
CV_HRrng_max 
Insulin_sd_sq 
alloutput_max_la 
MetCarcinoma_min 
WBC_mean_am 
AIDS_min 
Intercept 
MBPm.pr_min_am 
HemMalig_min 
RESP_mean_sq 
hrmVA_max 
PaO2toFiO2_mean 
Na_mean_am 
Mg_min_sq 
ShockIdx_max 
Platelets_mean_i 
hospTime_min_sqrt 
day_min_sq 
jaundiceSkin_mean_la 
CO2_mean_i 
Lasix_max_lam 
beta.Blocking_agent_mean_lam 
Sympathomimetic_agent_min 
SpO2.oor30.t_mean_sqrt 
BUNtoCr_min_sqrt 
Age_min_sq 

d.f. P C Dxy 
35 0 0.898 0.797 

Brier 
0.074 

Coef S.E. Wald Z P 
-0.0064668 5.032e-04 -12.85 0.0000 
-1.8734049 1.458e-01 -12.85 0.0000 
-0.9337190 1.179e-01 -7.92 0.0000 
-0.9137522 1.250e-01 -7.31 0.0000 
-0.3430971 5.151e-02 -6.66 0.0000 
-5.8856843 8.839e-01 -6.66 0.0000 
-0.0584113 9.453e-03 -6.18 0.0000 
-0.0902717 1.552e-02 -5.82 0.0000 
-0.0812232 1.459e-02 -5.57 0.0000 
-1.6132643 3.005e-01 -5.37 0.0000 
-0.0061979 1.216e-03 -5.10 0.0000 
-2.1686950 4.372e-01 -4.96 0.0000 
-0.0890330 2.265e-02 -3.93 0.0001 
0.4468763 1.567e-01 2.85 0.0043 
0.0147036 5.149e-03 2.86 0.0043 
0.5954305 1.991e-01 2.99 0.0028 
1.5314512 4.529e-01 3.38 0.0007 
1.4601630 3.518e-01 4.15 0.0000 
0.6032027 1.212e-01 4.98 0.0000 
0.0006615 1.324e-04 5.00 0.0000 
0.3520834 6.823e-02 5.16 0.0000 
0.2672376 4.336e-02 6.16 0.0000 
0.0549066 8.506e-03 6.45 0.0000 
0.1173220 1.815e-02 6.46 0.0000 
0.5742182 8.853e-02 6.49 0.0000 

24.0719462 3.560e+00 6.76 0.0000 
0.0057514 8.158e-04 7.05 0.0000 
0.0170075 2.372e-03 7.17 0.0000 
0.1469141 2.045e-02 7.18 0.0000 

19.3845272 2.682e+00 7.23 0.0000 
0.2523702 3.444e-02 7.33 0.0000 
0.2918077 3.923e-02 7.44 0.0000 
0.8576883 9.254e-02 9.27 0.0000 
0.4059329 4.128e-02 9.83 0.0000 
0.2829088 2.348e-02 12.05 0.0000 
0.0002601 1.495e-05 17.40 0.0000 

Figure by Hug, Caleb Wayne. "Detecting Hazardous Intensive Care Patient
Episodes Using Real-time Mortality Models." Massachusetts Institute of Technology, 2009.
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Figure 5-3: SDAS ROC curve (development data). AUC = the area under the curve;
n = the total number of available predictions used for curve; Missing = number of
missing predictions.

Table 5.4: SDAS Hosmer-Lemeshow H risk deciles (all days)
Died Survived

Decile Prob.Range Prob. Obs. Exp. Obs. Exp. Total
1 [0.000203,0.00335) 0.002 2 4.2 2011 2008.8 2013
2 [0.003353,0.00682) 0.005 3 9.9 2010 2003.1 2013
3 [0.006825,0.01281) 0.010 11 19.2 2002 1993.8 2013
4 [0.012812,0.02277) 0.017 24 34.8 1989 1978.2 2013
5 [0.022771,0.03971) 0.031 53 61.5 1960 1951.5 2013
6 [0.039706,0.06691) 0.052 104 104.8 1909 1908.2 2013
7 [0.066911,0.11297) 0.088 198 176.7 1815 1836.3 2013
8 [0.112972,0.20128) 0.152 324 305.3 1689 1707.7 2013
9 [0.201280,0.40232) 0.285 610 574.7 1403 1438.3 2013
10 [0.402321,0.99876] 0.634 1239 1276.9 774 736.1 2013

χ2 = 24.47, d.f. = 8; p = 0.002
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Figure 5-7: SDAS ROC curves (validation data)
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Evaluating the models
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Figure by Hug, Caleb Wayne. "Detecting Hazardous Intensive Care Patient
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