
 Sentential Calculus 
 

Logic is the science of correct, or as we shall say, valid, argument. A valid argument 
is one in which it is not possible for the premisses to be true and the conclusion false, and, 
moreover, you can tell just by looking at the structure of the argument that it is not 
possible for the premisses to be true and the conclusion false. So, to do logic, we have to 
look at the structure of arguments. An argument is made up of sentences and the sentences 
are made up of words, and we want to see how the words that appear in a correct 
argument fit together so as to preclude the possibility that the premisses are true and the 
conclusion false. 
 

Since the arguments we are interested in are mostly formulated in English, the most 
natural way to proceed would be to examine the way English sentences are built up out of 
English words, trying to determine what the structure of an English sentence contributes to 
fixing the conditions under which the sentence is true. Regrettably, we can’t proceed that 
way, because we understand altogether too little about what makes an English sentence 
true. Natural languages are just too complicated. 
 

Instead, we proceed indirectly, working not with natural languages but with formal 
languages that are vastly simpler than English, but that are still rich enough to display a lot 
of the features we find in English. We can straightforwardly determine which arguments in 
the formal language are valid. Next, we’ll learn how to translate from English into the 
formal language. The plan is to do the translations is such a way that, if the translated 
argument is valid in the formal language, then English argument must have been valid as 
well. Thus we can show an English argument valid by providing a translation into a 
demonstrably valid argument in the formal language. The formal languages are designed 
to exhibit the logical structure of English arguments in an especially stark form. 
 

We’ll begin with sentential calculus (SC), which provides a model of the way 
compound English sentences are built up out of simple English sentences. Later, we’ll 
deepen the analysis by examining the internal structure of simple English sentences. 
 

The sentences of the formal languages of the sentential calculus are built up out of 
simple sentence, called atomic sentences, by putting sentences together using what 
grammarians call "conjunctions" and what logicians call "connectives." Thus the formal 
language symbol "∧ " corresponds to the English word "and" or "but." If the 
formal-language sentence "A" means the same as the English sentence "Jack went up the 
hill" and "B" means the same as "Jill went up the hill," then "Jack and Jill went up the 
hill" will be translated "(A ∧  B)." The sentence will be true if Jack and Jill both went up 
the hill, and it will be false if neither went up the hill or if one went up the hill but the other 
didn't. We can sum the situation up with a truth table: 



 
A  B    (A ∧  B) 

          T  T          T 
                       T  F           F 
                       F  T           F 
                       F  F           F  

"∨ " translates the English "or."  Thus "(A ∨  B)" means "Jack or Jill went up the 
hill." It's not entirely clear whether we would ordinarily count the English sentence as true 
if both Jack and Jill climbed the hill. Mathematicians, at least, always use "or" to mean the 
inclusive "or"; "A or B" means "A or B or both." This is the usage we'll follow here. Thus 
we'll use "∨ " to mean what lawyers mean when they write "and/or." Thus       
 

A  B   (A ∨  B) 
                       T  T         T       

T  F         T       
F  T         T       
F  F          F           

 
"¬" corresponds to the English "not." "^¬B" is "Jack didn't go up the hill" and 

"¬B" is "Jill didn't go up the hill."      
 

A  B   ¬A   ¬B 
T  T   F      F 

                       T  F   F      T       
                       F  T   T      F       

F  F   T      T   
 

We can combine connectives to make more and more complicated sentences. For 
example, "Jack went up the hill but Jill did not" is "(A ∧  ¬B)," "Jack and Jill didn't both 
go up the hill" is "^¬(A ∧  B)," and "Neither Jack nor Jill went up the hill" is "¬(A ∨  B)." 
Their truth tables are 
 

A  B   (A ∧  ¬B)   ¬(A ∧  B)   ¬(A ∨  B) 
                       T  T         F          F               F       

T  F         T         T               F       
F  T         F         T               F       
F  F         F         T               T        

 
The connective "→" corresponds roughly to the English "if... then" construction. 

"If Jack went up the hill then so did Jill" is translated "(A → B)." Its truth table is       
 

A  B (A → B)       
T  T      T       
T  F       F       
F  T      T       
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F  F      T 
 
      The correlation between the formal language connective "→" and the English 
"if...then" is not very good. If I say "If the Giants win the pennant, they'll win the World 
Series," then if the Giants win both the pennant and the Series, I will have said something 
true, and if the Giants win the series without winning the Series I will have said something 
false. But if the Giants don't win the pennant, we don't normally think of what I said as 
either true or false. A bet that "If the Giants win the pennant they'll win the World Series" 
would be       
 

won if the Giants win both the pennant and the Series;       
lost if the Giants win the pennant but not the Series; and    
called off if the Giants don't win the pennant. 

 
A conditional statement like "If the Giants win the pennant, they'll win the World Series" 
is similar to a conditional promise "If I win the lottery I'll share it with you." Such a 
promise is kept if I win the lottery and share and broken if I win the lottery without 
sharing, but if I don't win the lottery, the promise has no effect, and it is neither kept nor 
broken. Thus the truth table for the English "if...then" looks like this       
 

A  B   if A, then B 
                       T  T         T       

T  F         F       
F  T       ___ 

                       F  F       ___      
 

In making up the artificial language, logicians filled in the blanks pretty much 
arbitrarily. When you translate the English "if...then" by the formal language "→", results 
you get aren't very reliable as a guide to what's going on in English.   
 

"→" is also read "only if." "Jack went up the hill only if Jill did" is "(A → B)."   
 
     The other connective in common use is "↔", which corresponds to the English phrase 
"if and only if." "Jack went up the hill if and only if Jill went up the hill," translated "(A 
↔ B)," will be true if Jack and Jill both went up the hill or if neither of them went up the 
hill; it will be false if only one of them went up the hill.       
 

A  B   (A ↔ B) 
            T  T        T       

T  F         F       
F  T         F 

            F  F        T  
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Some terminology: A sentence of the form (φ ∨  ψ) is called a disjunction, and φ and 
ψ are its disjuncts. A sentence of the form (φ ∧  ψ) is a conjunction, and φ and ψ are its 
conjuncts. ¬φ is a negation, and φ is its negatum. (φ → ψ) is a conditional, with φ as its 
antecedent and ψ as its consequent. (φ ↔ ψ) is a biconditional and φ and ψ are its 
components.  
 

The Greek letters aren’t a part of the formal language. They’re something I use in 
English to talk about the formal language.  We’ll employ the Greek letters as variables 
ranging over the sentences of the formal language. When I say that a sentence of the form 
(φ → ψ) is a conditional, with φ as its antecedent and ψ as its consequent, what I mean is 
that a sentence of the formal language obtained by taking two sentences, putting an arrow 
between them, and enclosing the result in parentheses is a conditional, with the sentence 
that appears just before the arrow as its antecedent and the sentence that appears just 
afterward as its consequent. 

 
A language for the sentential calculus is determined by specifying a nonempty set of 

simple expressions to serve as the atomic sentences. Usually we’ll take uppercase Roman 
letters, sometimes with Arabic numeral subscripts, to serve as our atomic sentences. The 
sentences of the language, which we refer to as SC sentences, constitute the smallest class of 
expression that:  
 

contains the atomic sentences;  
contains ¬φ whenever it contains φ; and  
contains (φ ∨  ψ), (φ ∧  ψ), (φ → ψ), and (φ ↔ ψ) whenever it contains both φ 
and ψ. 

 
In other words, if _ is the set of all sets of expressions that satisfy the three conditions, then 
an expression is an SC sentence if and only if it is a member of every member of _. 
 
 

Another way to give the same definition, without the Greek letters, is this: 
 

Every atomic sentence is an SC sentence. 
The result of writing "¬" in front of an SC sentence is always an SC 
sentence. 
Whenever you take two SC sentences, write one of the symbols "∧ ," "∨ ," 
"→," and "↔" between them, and enclose the result parentheses, what you 
get is an SC sentence. 
Nothing is an SC sentence unless it's required to be by the three clauses 
above. 
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       Notice the role that parentheses play in preventing ambiguities. If you combine "A," 
"B," and "C" by first taking the disjunction of "A" and "B," then taking the conjunction 
with "C," you get something different from what you'd get by taking the disjunction of 
"A" with the conjunction of "B" and "C." The first procedure gives you "((A ∨  B) ∧  C," 
whereas the second yields "(A ∨  (B ∧  C))." Indeed, we have the following:   

 
Unique Readability. A sentence of the language for the sentential 
calculus is built up from sentential letters in a unique way.  

 
Unique readability is an important respect in which the formal language is an 
improvement on English. The English sentence “Jack went up the hill or Jill went up the 
hill and someone fetched a pail of water” is ambiguous. 

The proof of unique readability, which involves a meticulous investigation of the 
mating habits of parentheses [in brief, they are monogamous and heterosexual], will not be 
given here, but I will give the idea of the proof. The idea of the proof is that we can 
represent the structure of any given sentence by a finite tree in which each node of the tree 
is labeled by a sentence. The given sentence is the label of the trunk of tree. Whenever a 
node is labeled by a conjunction, there will be two other nodes directly beneath the node, 
each labeled with one of the conjuncts. Similarly for disjunctions, conditionals, and 
biconditionals. A node labeled by a negation has just one node directly beneath it, labeled 
by the sentence negated. The leaves of the tree are labeled by atomic sentences. For 
example, here is the tree associated with the sentence "¬(A ∧  (B ∧  ¬(¬A ∧  C)))": 
 

¬(A ∧  (B ∧  ¬(¬A ∧  C))) 
 
 

(A ∧  (B ∧  ¬(¬A ∧  C)))  
 
 

    A                         (B ∧  ¬(¬A ∧  C)) 
 
 

B  ¬(¬A ∧  C) 
 
 

  (¬A ∧  C) 
 

 
                      ¬A            C 

 
 

             A 
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Unique readability is proved by showing that each sentence is associated with one and only 
one labeled tree. 
 

Because of unique readability, we know that every SC sentence falls into exactly one 
of the following six categories: 
 

atomic sentence 
conjunction 
disjunction 
conditional 
biconditional 
negation 

 
Now we have our formal language, but we can't yet use it to say anything, because 

the sentences of the language don't mean anything. So far, the sentences of the language 
are just strings of symbols, no more meaningful than 
"!Q#W$%&)(*[<>?@[]+@♠_ xZ^?_♥ ." Before a sentence of the language can be used to 
make a statement that is either true or false, we have to interpret the formal language. This 
is the task to which we now turn. 


