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1. Introduction and Plato’s The Sophist 

To progress any further, we are going to need an analysis that goes 
deeper than looking at how complex sentences are formed out of simple 
sentences. We will have to look at the internal structures of the simple 
sentences. 

A good place to begin is the Sophist, where Plato gives an account 
of what makes the very simplest sentences true or false. Unlike the 
typical Platonic dialogue, where Socrates plays the dominant role, the 
principal role in this dialogue is played by Theætetus. Theætetus will 
go on to distinguish himself as a courageous leader in battle and also 
as a geometer. It was Theætetus who first discovered the five regular 
solids—polyhedra all of whose sides and angles are congruent—namely, 
the cube, the tetrahedron, the octahedron, the dodecahedron, and the 
icosahedron. But I digress. Here is a quote from Benjamin Jowett’s 
translation: 

Stranger. Then, as I was saying, let us first of all obtain 
a conception of language and opinion, in order that we 
may have clearer grounds for determining, whether not­
being has any concern with them, or whether they are 
both always true, and neither of them ever false. 

Theætetus. True. 
Stranger. Then, now, let us speak of names, as before 

we were speaking of ideas and letters; for that is the 
direction in which the answer may be expected. 

What they decided about ideas and about names was that some fit 
together and others do not. For example, you cannot get a word by 
forming a string of consonants, but you can get a word by combining 
consonants and vowels in the right way. 

Theætetus. And what is the question at issue about 
names? 
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Stranger. The question at issue is whether all names 
may be connected with one another, or none, or only 
some of them. 

Theætetus. Clearly the last is true. 
Stranger. I understand you to say that words which 

have a meaning when in sequence may be connected, 
but that words which have no meaning when in sequence 
cannot be connected? 

Theætetus. What are you saying? 
Stranger. What I thought that you intended when you 

gave your assent; for there are two sorts of intimation of 
being which are given by the voice. 

Theætetus. What are they? 
Stranger. One of them is called nouns, and the other 

verbs. 
Theætetus. Describe them. 
Stranger. That which denotes action we call a verb. 
Theætetus. True. 
Stranger. And the other, which is an articulate mark 

set on those who do the actions, we call a noun. 
Theætetus. Quite true. 
Stranger. A succession of nouns only is not a sentence 

any more than of verbs without nouns. 
Theætetus. I do not understand you. 
Stranger. I see that when you gave your assent you 

had something else in your mind. But what I intended 
to say was that a mere succession of nouns or of verbs 
is not discourse. 

Theætetus. What do you mean? 
Stranger. I mean that words like “walks”, “runs”, 

“sleeps”, or any other words which denote action, how­
ever many of them you string together, do not make 
discourse. 

Theætetus. How can they? 
Stranger. Or, again, when you say “lion”, “stage”, 

“horse”, or any other words which denote agents—neither 
in this way of stringing words together do you attain to 
discourse; for there is no expression of action or inac­
tion, or of the existence or non-existence indicated by 
the sounds, until verbs are mingled with nouns; then 
the words fit, and the smallest combination of them 
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formslanguage, and is the simplest and least form of 
discourse. 

Theætetus. Again I ask, “What do you mean?” 
Stranger. When any one says, “A man learns,” should 

you not call this the simplest and least of sentences? 
Theætetus. Yes. 
Stranger. Yes, for he now arrives at the point of giving 

an intimation about something which is, or is becoming, 
or has become, or will be. And he not only names, but 
he does something, by connecting verbs with nouns; and 
therefore we say that he discourses, and to this connec­
tion of words we give the name of discourse. 

Theætetus. True. 
Stranger. And as there are some things which fit one 

another, and other things which do not fit, so there are 
some vocal signs which do, and others which do not, 
combine and form discourse. 

Theætetus. Quite true.

Stranger. There is another small matter.

Theætetus. What is it?

Stranger. A sentence must and cannot help having a


subject. 
Theætetus. True. 
Stranger. And must be of a certain quality. 
Theætetus. Certainly. 
Stranger. And now let us mind what we are about. 
Theætetus. We must do so. 
Stranger. I will repeat a sentence to you in which a 

thing and an action are combined, by the help of a noun 
and a verb; and you shall tell me of whom the sentence 
speaks. 

Theætetus. I will, to the best of my power.

Stranger. “Theætetus sits”—not a very long sentence.

Theætetus. Not very.

Stranger. Of whom does the sentence speak, and who


is the subject that is what you have to tell. 
Theætetus. Of me; I am the subject. 
Stranger. Or this sentence, again. 
Theætetus. What sentence? 
Stranger. “Theætetus, with whom i am now speaking, 

is flying.” 
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Theætetus. That also is a sentence which will be ad­
mitted by every one to speak of me, and to apply to 
me. 

Stranger. We agreed that every sentence must neces­
sarily have a certain quality. 

Theætetus. Yes. 
Stranger. And what is the quality of each of those 

two sentences? 
Theætetus. The one, as I imagine, is false, and the 

other true. 
Stranger. The true says what is true about you? 
Theætetus. Yes. 
Stranger. And the false says what is other than true? 
Theætetus. Yes. 
Stranger. And therefore speaks of things which are 

not as if they were?’ 
Theætetus. True. 
Stranger. And say that things are real of you which 

are not; for, as we were saying, in regard to each thing 
or person, where is much that is and much that is not. 

Theætetus. Quite true. 
Stranger. The second of the two sentences which re­

lated to you was first of all an example of the shortest 
form consistent with our definition. 

Theætetus. Yes, this was implied in recent admission. 
Stranger. And, in the second place, it related to a 

subject? 
Theætetus. Yes. 
Stranger. Who must be you, and can be nobody else? 
Theætetus. Unquestionably. 
Stranger. And it would be no sentence at all if there 

were no subject, for as we proved, a sentence which has 
no subject is impossible. 

Theætetus. Quite true. 
Stranger. When other, then, is asserted of you as the 

same, and not-being as being, such a combination of 
nouns and verbs is really and truly false discourse. 

Theætetus. Most true. 

In our formal language, individual constants, usually lowercase letters 
from the early part of the alphabet, will play the role of names, and 
predicates, usually uppercase letters, will play the role of verb. Thus 
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“t” will denote Theætetus, and “S” and “F” will represent the actions 
of sitting and flying, respectively. “Theætetus sits” will be symbolized 
“St.” and “Theætetus flies” will be “Ft.” The sentence is true just in 
case the individual named by the name performs the action designated 
by the verb. 

2. Extension of Plato’s The Sophist 

We want to start with Plato’s account and extend it, as far as we 
can, beyond the very simple sentences Plato considers. The first thing 
we notice is that simple sentences of the form 

name + copula + adjective 

or 

name + copula + indefinite article + common noun 

like 

Theætetus is brave. 

or 

Theætetus is a Greek. 

can be readily covered by Plato’s account. Thus, we take a simple 
sentence to consist of a proper name, such as “Theætetus,” and a 
predicate, such as “sits” or “is brave” or “is a Greek.” The proper 
name designates an individual and the predicate designates a property 
or action. The sentence is true just in case the individual has the 
property or performs the action. We’ll symbolize “Theætetus is brave” 
as “Bt,” and we’ll use “Gt” to symbolize “Theætetus is a Greek.” 

We can combine the simple sentences by means of sentential connec­
tives, so that “Theætetus is a brave Greek” will be 

(Bt ∧Gt) 

“Theætetus either sits or flies” will be 

(St ∨ Tt) 

“Theætetus sits but he does not fly” is 

(St ∧ ¬Ft) 

“If Theætetus is brave, so is Socrates” is 

(Bt → Bs) 

It is tempting to try to treat “Something flies” as analogous to 
“Theætetus flies.” The temptations should be resisted. One way to 
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see that there is a big difference between “Theætetus flies” and “Some­
thing flies” is to observe that “Theætetus flies” and “Theætetus is a 
man” together imply “Theætetus is a man who flies,” whereas “Some­
thing flies” and “Something is a man” do not imply “Something is a 
man who flies.” 

The correct analysis, due to Frege, is this: Whereas “Theætetus 
flies” and “Theætetus is a man” are to be understood as attributing 
a property (flying; manhood) to an individual (Theætetus), “Some­
thing flies” is to be understood as attributing a property to a property. 
Namely “Something flies” says about the property of flying that it is 
instantiated. Similarly, “Something is a man” says about the prop­
erty of manhood that it is instantiated. We represent the property 
of flying in English by an open sentence “x flies,” and in the formal 
language by an open sentence “Fx.” We indicate that something flies 
in the formal language by prefixing the existential quantifier “(∃x)” to 
the open sentence “Fx,” getting “(∃x)Fx.” “(∃x)” is read “for some 
x” or “there is such an x such that.” Similarly, the property of man­
hood is indicated in English by the open sentence “x is a man” and 
in the formal language by the open sentence “Mx.” We indicate that 
something is a man by prefixing the existential quantifier to the open 
sentence “Mx,” getting “(∃x)Mx.” The property of being a man who 
flies is indicated in English by the open sentence “x is a man who flies” 
or “x is a man and x flies” and in the formal language by the open 
sentence “(Mx ∧ Fx).” We indicate that some men fly by prefixing 
the existential quantifier to the open sentence “(Mx ∧ Fx),” getting 
“(∃x)(Mx ∧ Fx).” 

Similarly, it would be tempting to treat “Everything is a man” as 
analogous to “Theætetus is a man.” The resemblance between the 
two is superficial, however, as we can see from the following example: 
“Theætetus is either a man or a woman” and “It is not the case that 
Theætetus is a woman” together imply “Theætetus is a man,” whereas 
“Everything is either a man or a woman” and “It is not the case that 
everything is a woman” do not imply “Everything is a man.” Whereas 
“Theætetus is a man” indicates that a certain individual (Theætetus) 
has certain property (manhood), “Everything is a man” attributes 
a property to a property. Namely, “Everything is a man” tells us 
about the property of manhood that it is possessed by everything. We 
indicate that everything is a man by prefixing the universal quanti­
fier “(∀x)” (read “for all x” or “for every x”) to the open sentence 
“Mx,” getting “(∀x)Mx.” We indicate that everything flies by writing 
“(∀x)Fx.” We indicate that all men fly by writing “(∀x)(Mx → Fx),” 
so that, for every x, either x is not a man or else x flies. 
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3. Use of Venn Diagrams to Illustrate Logical 
Relationships 

3.1. Quantified Statements. We can use Venn digrams to illustrate 
quantified statements. 

Example 3.1. “Everyone is a man or a woman” [“(∀x)(Mx ∨ Wx)”] 
is indicated by shading Cell 4 in Figure 1, to indicate that there is 
nothing in Cell 4. 

Figure 1. Everyone is a man (M) or a woman (W ). 
“Everyone is a man or a woman” [“(∀x)(Mx ∨ Wx)”] 
is indicated by shading Cell 4, to indicate that there is 
nothing in Cell 4. 

Example 3.2. “All men fly” [“(x)(Mx → Fx)”] is indicated by shading 
Cell 2 in Figure 2. 

Figure 2. All men (M) fly (F ). “All men fly” 
[“(x)(Mx → Fx)”] is indicated by shading Cell 2. The 
shading in Cell 2 means there is nothing in Cell 2. 
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Example 3.3. “Everything that flies is a man” [“(∀x)(Fx → Mx)”] is 
indicated in Figure 3 by shading Cell 3. 

Example 3.4. “Everything that flies is either a man or a woman” 
[“(∀x)(Fx → (Mx ∨Wx))”] is indicated by shading Cell 7 in Figure 4. 

Figure 3. Everything that flies (F ) is a man (M). “Ev­
erything that flies is a man” [“(∀x)(Fx → Mx)”] is in­
dicated by shading Cell 3. The shading in Cell 3 means 
there is nothing in Cell 3. 

Figure 4. Everything that flies (F ) is either a man (M) 
or a woman (W ). “Everything that flies is either a man 
or a woman” [“(∀x)(Fx → (Mx ∨ Wx))”] is indicated 
by shading Cell 7. The shading in Cell 7 means there is 
nothing in Cell 7. 
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Example 3.5. “Everyone who is either a man or a woman flies” [“(∀x)((Mx∨ 
Wx) → Fx)”] is indicated by shading Cells 2, 4, and 6 in Figure 5. 

Figure 5. Everyone who is either a man (M) or a 
woman (W ) flies (F ). “Everyone who is either a man 
or a woman flies” [“(∀x)((Mx ∨ Wx) → Fx)”] is indi­
cated by shading Cells 2, 4, and 6. The shading in Cells 
2, 4, and 6 means there is nothing in those cells. 

Example 3.6. For “Everyone who is both a man and a woman flies” 
[“(∀x)((Mx ∧ Wx) → Fx)”] we shade Cell 2 in Figure 6, while for 
“Everyone who flies is both a man and a woman” [“(∀x)(Fx → (Mx ∧ 
Wx))”] we shade Cells 3, 5, and 7 in Figure 7. 

3.2. Statements Beginning With an Existential Quantifier. How 
about sentences that begin with an existential quantifier? If we want 
to illustrate the sentence “Someone who is either a man or a woman 
flies” [“(∃x)((Mx ∨ Wx) ∧ Fx)”], we want to indicate that there is 
something in at least one of the three Cells 1, 3, and 5. We can do 
this by drawing a curve that passes through Cells, 1, 3, and 5, as in 
Figure 8. You can think of the curve as like a train track; there is a 
locomotive somewhere along the track. 
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Figure 6. Everyone who is both man (M) and a woman 
(W ) flies (F ). For “Everyone who is both a man and a 
woman flies” [“(∀x)((Mx ∧Wx) → Fx)”], we shade Cell 
2. The shading in Cell 2 means there is nothing in Cell 
2. 

Figure 7. Everyone who flies (F ) is both a man (M) 
and a woman (W ). For “Everyone who flies is both a 
man and a woman” [“(∀x)(Fx → (Mx∧Wx))”] we shade 
Cells 3, 5, and 7. The shading in Cells 3, 5, and 7 means 
there is nothing in those cells. 
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Figure 8. Someone who is either a man (M) or a 
woman (W ) flies (F ). For “Someone who is either a man 
or a woman flies [“(∃x)((Mx ∨Wx) ∧ Fx)”] we draw a 
curve that passes through Cells 1, 3, and 5. 

Example 3.7. “There are some men who either sit or fly” [“(∃x)(Mx ∧ 
(Sx∨Fx))”] is indicated by a curve that passes through Cells 1, 2, and 
3 in Figure 9. 

Figure 9. There are some men (M) who either sit (S) 
or fly (F ). For “There are some men who either sit or 
fly” [“(∃x)(Mx ∧ (Sx ∨Fx))”], the curve passes through 
Cells 1, 2, and 3. 

Example 3.8. “There are some men who both sit and fly” [“(∃x)(Mx ∧ 
(Sx ∧ Fx))”] is indicated by a curve that is contained entirely within 
Cell 1, as in Figure 10. 
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Example 3.9. “There are some men who fly, and there are some men 
who do not” [“((∃x)(Mx ∧ Fx) ∧ (∃x)(Mx ∧ ¬Fx))”] is indicated in 
Figure 11 by having a curve that is contained entirely within Cell 2. 

Example 3.10. “There are some men who sit, some men who fly, and 
some men who do neither” [“((∃x)(Mx ∧ Sx) ∧ (∃x)(Mx ∧ Fx) ∧ 
(∃x)(Mx ∧¬(Sx ∨Fx)))”] is indicated in Figure 12 by having a curve 

Figure 10. There are some men (M) who both sit (S) 
and fly (F ). For “There are some men who both sit and 
fly” [“(∃x)(Mx ∧ (Sx ∧ Fx))”], the curve is contained 
entirely within Cell 1. 

Figure 11. There are some men (M) who fly (F ), and 
there are some men who do not. For “There are some 
men who fly, and there are some men who do not” 
[“((∃x)(Mx ∧ Fx) ∧ (∃x)(Mx ∧ ¬Fx))”], one curve is 
contained entirely in within Cell 1 and another curve is 
entirely in Cell 2. 
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that passes through Cells 1 and 2, a second curve that passes through 
Cells 1 and 3, and yet another curve that is contained entirely within 
Cell 4. 

Figure 12. There are some men (M) who sit (S), some 
men who fly (F ), and some men who do neither. For 
“There are some men who sit, some men who fly, and 
some men who do neither” [“((∃x)(Mx∧Sx)∧(∃x)(Mx∧ 
Fx)∧ (∃x)(Mx ∧¬(Sx ∨Fx)))”], there are three curves: 
one that passes through Cells 1 and 2, one for Cells 1 
and 3, and one entirely in Cell 4. 

3.3. Statements Containing Proper Names. Sentences that con­
tain proper names are indicated the same way, except that we label the 
curves. 

Example 3.11. “Theætetus is a man who either sits or flies” [“(Mt ∧ 
(St∨Ft))”] is indicated in Figure 13 by having a curve marked “t” pass 
through cells 1, 2, and 3. Theætetus is a locomotive that is located 
somewhere along the track. 

Example 3.12. “Theætetus is a man who both sits and flies” [“(Mt ∧ 
(St ∧Ft))”] is indicated in Figure 14 by a curve marked “t” contained 
entirely within Cell 1. 
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Figure 13. Theætetus (t) is a man (M) who either sits 
(S) or flies (F ). For “Theætetus is a man who either 
sits or flies” [“(Mt ∧ (St ∨ Ft))”], the curve marked “t” 
passes through Cells 1, 2, and 3. 

Figure 14. Theætetus (t) is a man (M) who both sits 
(S) and flies (F ). For “Theætetus is a man who both 
sits and flies” [“(Mt ∧ (St ∧Ft))”], the curve marked “t” 
is contained entirely in Cell 1. 
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Example 3.13. “Rambo, who is a man, does not fly, but Dumbo, who 
is not a man, does fly” [“((Mr ∧ ¬Fr) ∧ (¬Md ∧ Fd))”] is illustrated 
in Figure 15 by two curves, one marked “r,” contained within Cell 2, 
and the other, marked “d,” contained within Cell 3. 

Figure 15. Rambo (r), who is a man (M), does not fly 
(F ), but Dumbo (d), who is not a man, does fly. For 
“Rambo, who is a man, does not fly, but Dumbo, who is 
not a man, does fly” [“((Mr ∧ ¬Fr) ∧ (¬Md ∧ Fd))”], 
the curve marked “r” is contained within Cell 2 and the 
curve marked “d” within Cell 3. 

3.4. Validity of Arguments. We can use Venn diagrams to show 
that certain arguments are valid. 

Example 3.14. For example, consider this argument: 

All terriers are dogs. 
All dogs are mammals. 
Therefore all terriers are mammals. 

In symbols, 

(∀x)(Tx → Dx) 
(∀x)(Dx → Mx) 
∴ (∀x)(Tx → Mx). 

We see whether it is possible to have the premise true and the conclu­
sion false. The first premise is indicated in Figure 16 by shading Cells 
3 and 4. The second premise is indicated by shading Cells 2 and 6. If 
the conclusion were false, there would be something either in Cell 2 or 
in Cell 4; we indicate this by a train track passing through Cells 2 and 
4. But, while the train track would indicate that there is something 
either within Cell 2 or Cell 4, the fact that Cells 2 and 4 are both 
shaded indicates that there is nothing in either of those cells. So the 
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attempt to diagram a situation in which the premises are true and the 
conclusion false ends up with an impossibility. So the argument must 
be valid. 

Figure 16. All terriers are mammals. All terriers (T) 
are dogs (D). All dogs are mammals (M). Therefore all 
terriers are mammals. (∀x)(Ex → Mx) (∃x)(Ex ∧ Fx) 
∴ (∃x)(Mx ∧ Fx). The curve runs through Cells 2 and 
4. The shading of cells 2, 3, 4, and 6 indicates there is 
nothing in those cells. 

Example 3.15. Another example: 

All elephants are mammals.

Some elephants can fly.

Therefore some mammals can fly.


In symbols, 

(∀x)(Ex → Mx)

(∃x)(Ex ∧ Fx)

∴ (∃x)(Mx ∧ Fx).


In Figure 17, we try to diagram a situation in which the premises 
are true and the conclusion is false. The first premise is indicated by 
shading Cells 3 and 4. The second premise is indicated by a train 
track passing through Cells 1 and 3. To say the conclusion is true is 
to say that there is something either in Cell 1 or in Cell 5. Thus, to 
indicate that the conclusion is false, we shade Cells 1 and 5. But this 
has the train track passing entirely through shaded territory, which is 
impossible. So the argument must be valid. 

Example 3.16. Here is an inference to consider: 



18 PROFESSOR VANN MCGEE 

Dumbo is an elephant. 
Dumbo flies. 
Therefore some elephants fly. 

In symbols, 

Ed

Fd

∴ (∃x)(Ex ∧ Fx).


To represent the first premise, we draw a train track marked “d” 
through Cells 1 and 2 in Figure 18. We indicate the second premise 
by crossing out the part of this train track which lies outside circle 
“F .” To indicate the falsity of the conclusion, we shade Cell 1. But 
this gives us a train track every part of which is either crossed out or 
shaded, which represents an impossible situation. 

Example 3.17. Now consider this inference: 

Traveler is a horse. 
All horses eat oats. 
Therefore Traveler eats oats. 

In symbols, 

Ht

(∀x)(Hx → Ox)

∴ Ot.


Figure 17. Some mammals can fly. All elephants (E) 
are mammals (M). Some elephants can fly (F). Therefore 
some mammals can fly. (∀x)(Ex → Mx). (∃x)(Ex ∧ 
Fx). ∴ (∃x)(Mx ∧ Fx). The curve passes through Cells 
1 and 3. The shading in Cells 1, 3, 4, and 5 indicates 
there is nothing in those cells. 
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The first premise is indicated in Figure 19 by a curve marked “t” pass­
ing through Cells 1 and 2, and the second premise is indicated by 
shading Cell 2. We indicate the falsity of the conclusion by crossing 
out the part of curve “t” which lies inside circle “O.” But this means 
the whole curve is either crossed out or shaded, which is impossible. 

Example 3.18. As a final example, consider 

Everyone is either a man or a woman. 

Figure 18. Some elephants fly. Dumbo (d) is an ele­
phant (E). Dumbo flies (F ). Therefore some elephants 
fly. Ed. Fd. ∴ (∃x)(Ex ∧ Fx). The curve marked “d” 
passes through Cells 1 and 2. In Cell 2, the curve is 
crosshatched. The shading in Cell 1 indicates there is 
nothing in the cell. 

Figure 19. Traveler eats oats. Traveler (t) is a horse 
(H). All horses eat oats (O). Therefore Traveler eats 
oats. Ht. (∀x)(Hx → Ox). ∴ Ot. The curve marked 
“t” passes through Cells 1 and 2. In Cell 1, the curve is 
crosshatched; Cell 2 is shaded to indicate nothing in the 
cell. 
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Not everyone is a man.

Therefore someone is a woman.


In symbols 

(∀x)(Mx ∨Wx) 
¬(∀x)Mx 
∴ (∃x)Wx. 

The first premise is indicated in Figure 20 by shading Cell 4. “(∀x)Mx” 
says that there is notheing in either Cell 3 or Cell 4. “¬(∀x)Mx” denies 
this, so it says that there is something either in Cell 3 or in Cell 4, a 
fact we can indicate by drawing a curve passing through Cells 3 and 
4. The conclusion says that there is someone either in Cell 1 or in Cell 
3. So we can indicate the falsity of the conclusion by shading Cells 1 
and 3. But this has the train track passing entirely through shaded 
territory, which is impossible. 

Figure 20. Someone is a woman. Everyone is ei­
ther a man (M) or a woman (W ). Not everyone is a 
man. Therefore someone is a woman. (∀x)(Mx ∨Wx). 
¬(∀x)Mx. ∴ (∃x)Wx. A curve passes through Cells 3 
and 4. Cells 1, 3, and 4 are shaded to indicate nothing 
in the cells. 

4. Formal Development 

We now turn to a more formal development. A language for the 
monadic predicate calculus (MPC) is given by specifying two kinds of 
things: individual constants (usually lowercase letters from the early 
part of the alphabet), which play the role of proper names, and pred­
icates (usually uppercase letters), which play the roles of intransitive 
verbs, common nouns, and adjectives. An atomic formula consists ei­
ther of a predicate followed by an individual constant or of a predicate 
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followed by the variable “x.” The formulas of the language constitute 
the smallest class of expressions which 

contains the atomic formulas: 
contains (φ ∧ ψ), (φ ∨ ψ), (φ → ψ), and (φ ↔ ψ) 
whenever it contains φ and ψ; and 
contain ¬φ, (∀x)φ, and (∃x)φ whenever it contains φ. 

Proposition 4.1 (Unique Readability). A formula is built up from 
atomic formulas in a unique way. 

The subformulas of a particular formula are just the formulas that 
are contained within the given formula, where a formula is counted as a 
subformula of itself. If an occurence of the letter “x” within a particular 
formula is contained within a subformula beginning with “(∀x)” or with 
“(∃x),” the occurence is said to be bound. Otherwise it is said to be 
free. A formula with no free occurrences of “x” is a sentence. Where 
φ is a formula and c is a constant, we write φx

c for the sentence that 
results from replacing each free occurrence of “x” in φ by “c.” 

Example 4.2. In “(Fx ∧ (∀x)(Gx ∧ ¬(∀x)Jx)),” the first occurrence 
of “x” is free, and the other four are bound. “(Fx ∧ (∀x)(Gx ∧ 
¬(∀x)Jx))”x

d is the sentence “(Fd ∧ (∀x)(Gx ∧ ¬(∀x)Jx)).” 

Example 4.3. In “((∀x)(Fx ↔ Gx) ∧ ((∃x)Fx ↔ (Hx ∧ Jc))),” the 
first five occurrences of “x” are bound and the remaining occurrence is 
free. “((∀x)(Fx ↔ Gx) ∧ ((∃x)Fx ↔ (Hx ∧ Jc)))”x

c is “((∀x)(Fx ↔ 
Gx) ∧ ((∃x)Fx ↔ (Hc ∧ Jc))),” which is a sentence. 

Example 4.4. In “(((∀x)Fx ↔ Gx)∧(∃x)(Fx ↔ (Hx∧Jc))),” only the 
third occurrence of “x” is free; the other five are bound. “(((∀x)Fx ↔ 
Gx) ∧ (∃x)(Fx ↔ (Hx ∧ Jc)))”x

e is the sentence “(((∀x)Fx ↔ Gx) ∧ 
(∃x)(Fx ↔ (He ∧ Jc))).” 

Example 4.5. “Fc” and “(∀x)Fx” are both sentences. 

Example 4.6. In general, if φ is a formula and c is a constant, φx

c is 
a sentence. Also, every formula which begins with either “(∀x)” or 
“(∃x)” is a sentence. 

Definition 4.7. An interpretation (of a language of the MPC) is a 
function A defined on {“∀”} ∪ {individual constants of the language} 
∪ {predicates of the language} that meets the following conditions: 

•	 A(“∀”), also written |A|, is a nonempty set, called the universe 
of discourse or the domain of the interpretation. 

•	 If c is a constant, A(c), also written cA, is an element of |A|. 
•	 If R is a predicate, A(R), also written RA, is a subset of |A|. 
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The universe of discourse of a particular discussion consists of the 
things we are talking about within that discussion. When I say, sitting 
at the dinner table with the family, “Everybody who finishes her Brus­
sel sprouts will get ice cream,” I’m not promising to reward everyone 
in the whole world who eats her Brussel sprouts, just everyone sitting 
there at the table. For any formula φ, there will be a set of members 
of the universe of A that satisfy φ in A. If this set is nonempty, the 
sentence (∃x)φ will be true in A. If every member of |A| satisfies φ in 
A, ((∀x)φ)) will be true in A. If the member cA of |A| satisfies φ in A, 
then the sentence φx will be true in A. It makes no sense to talk about 

c 
a sentence of the formal language being true or false absolutely. A 
sentence can be either true or false under an interpretration; a formula 
with free variables cannot. 

Intuitively, we have three fundamental semantic notions, truth, fal­
sity, and satisfaction. A sentence expresses a thought that is either true 
or false, whereas a formula that is not a sentence represents a property, 
and the formula is satisfied by those elements of the universe that have 
the property. We shall simplify our treatment by departing from our 
intuitions a little bit, applying the notion of satisfaction to all formulas, 
whether or not the formulas contain free variables, stipulating that a 
true sentence is satisfied by every member of the universe of discourse, 
whereas a false sentence is satisfied by nothing. Specifically, we have 
the following: 

Proposition 4.8. Given an interpretation A, 

an atomic formula of the form Rx is satisfied by the 
members of A(R); 

an atomic formula of the form Rc is satisfied by ev­
ery member of the universe if A(c) is an element of 
A(R); 

otherwise, Rc is satisfied by nothing; 
a formula of the form (φ ∧ψ) is satisfied by those mem­

bers of the universe of discourse which either satisfy 
both φ and ψ; 

a formula of the form (φ ∨ψ) is satisfied by those mem­
bers of the universe of discourse which either satisfy 
either φ and ψ (or both); 

a formula of the form (φ → ψ) is satisfied by those mem­
bers of the universe of discourse which either satisfy 
ψ or fail to satisfy φ; 

a formula of the form (φ ↔ ψ) is satisfied by those mem­
bers of the universe of discourse which satisfy both 
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φ and ψ and also by those members of the domain 
which satisfy neither φ nor ψ; 

a formula of the form ¬φ is satisfied by those members 
of the universe of discourse which fail to satisfy φ; 

if every member of the universe satisfies φ, then every 
member of the universe satisfies (∀x)φ; 

if some member of the universe fails to satisfy φ, nothing 
satisfies (∀x)φ; 

if some member of the universe satisfies φ, every mem­
ber of the universe satisfies (∃x)φ; 

if no member of the universe satisfies φ, no member of 
the universe satisfies (∃x)φ; 

Example 4.9. As an example of an interpretation, let’s let 

|A| = {animals} 
A(“b”) = Bonzo the chimpazee 
A(“c”) = Celia the canary 
A(“r”) = Reagan, the former president 
A(“B”) = {animals that bay at the moon} 
A(“D”) = {dogs} 
A(“F ”) = {animals that fly} 
A(“C”) = {chipmunks} 

Since Celia can fly, A(“c”) is an element of A(“F ”), and so every 
animal will satisfy “Fc”. A(“r”) ∈/ A(“F ”), since Reagan can’t fly, so 
nothing will satisfy “Fr.” “Bx” will be satisfied by the animals that 
bay at the moon and “Dx” will be satisfied by the dogs. “(Dx ∧Bx)” 
will be satisfied by the dogs that bay at the moon. “¬Fx” will be 
satisfied by the animals that don’t fly. “(Dx∧¬Bx)” will be satisfied by 
the dogs that don’t bay at the moon. Since some dogs bay at the moon, 
every animal will satisfy “(∃x)(Dx ∧ Bx).” Since no dogs fly, nothing 
will satisfy “(∃x)(Dx ∧ Fx).” Nothing satisfies “(∀x)(Dx → Bx),” 
since not every dog bays at the moon. Since Reagan isn’t a chipmunk, 
nothing satisfies “Cr.” So every animal satisfies “^¬Cr.” So every 
animal satisfies “(∀x)¬Cr.” � 

Let’s introduce some technical jargon. A formula that begins with 
“(∀x)” is a universal formula. One that begins with “(∃x)” is an exis­
tential formula. Formulas that begin either with “(∀x)” or with “(∃x)” 
are said to be initially quantified. Conjuctions, disjunctions, negations, 
conditionals, and biconditionals are referred to as molecular formulas. 
Every formula which isn’t either atomic or initially quantified is built 
up from atomic formulas and from initially quantified by means of the 
connectives “∧,” “∨,” “¬,” “→,” and “↔.” We refer to those atomic 
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and initially quantified sentences out of which a given sentence is built 
as its basic truth-functional components. 

Definition 4.10. A sentence which is satisfied by every member of |A| 
under an interpretation A is said to be true under A. A sentence which 
is satisfied by no member of |A| under A is false under A. 

Theorem 4.11 (Law of Bivalence). Given an interpretation A, every 
sentence is either true under A or false under A. 

Proof. Since every sentence is built up from atomic sentences and from 
initially quantified sentences by means of the sentential connectives, it 
will be enough to show that, given an interpretation A, every atomic 
sentence and every initially quantified sentence is either true or false 
under A and that every sentence formed from sentences which are either 
true or false under A by means of the sentential connectives is either 
true or false under A. 

An atomic sentence takes the form “Fc.” Such a sentence is true 
under A if A(c) ∈ A(F ) and false under A if A(c) ∈/ A(F ). A universal 
sentence (∀x)φ is true under A if every member of |A| satisfies φ under 
A, and it is false under A otherwise. An existential sentence (∃x)φ is 
true under A if at least one member of |A| satisfies φ under A, and it 
is false under A otherwise. 

A conjuction is true under A if both conjuncts are true under A, and 
it is false under A if either conjunct is false under A. A disconjuction 
is true under A if either disjunct is true under A, and it is false under 
A if both disjuncts are false under A. A negation is true under A if the 
negatum is false under A, and it is false under A if the negatum is true 
under A. A conditional is true under A if the antecedent is false under 
A or the consequent is true under A; if the antecedent is true under A 
and the consequent is false under A, the conditional is false under A. 
A biconditional is true under A if both components are true under A 
or both components are false under A; if one component is true and 
the other is false, the biconditional is false under A. � 

Corollary 4.12. For any sentence φ, interpretation A, and element a 
of |A|, φ is true under A iff a satisfies φ under A. 

Proof. If φ is true under A, then, by defnition of“true,” every element 
of |A�| satisfies φ under A. So in particular, a satisfies φ under A. If, 
on the other hand, φ isn’t true under A, then, by bivalence, φ is false 
under A, so that, by definition of “false,” nothing satisfies φ under A; 
so, in particular, a doesn’t satisfy φ under A. � 
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The following definition is taken over directly from the sentential 
calculus: 

Definition 4.13. A normal truth assignment (N.T.A) is a function 
which assigns a number, either 0 or 1, to each sentence, subject to the 
following conditions 

•	 A conjuction is assigned 1 iff both conjuncts are assigned 1. 
•	 A disconjuction is assigned 1 iff one or both disconjuncts are 

assigned 1. 
•	 A negation is assigned 1 iff the negatum is assigned 0. 
•	 A conditional is assigned 1 iff the antecedent is assigned 0 or 

the consequent is assigned 1. 
•	 A biconditional is assigned 1 iff both components are assigned 

the same value. 

Definition 4.14. A sentence is tautological iff it is assigned the value 
1 by every N.T.A. A sentence is valid iff it is true under every N.T.A 

For the sentential calculus, the words “tautological” and “valid” were 
different words for the same thing. Now that we’ve started on the 
predicate calculus, we need to distinguish them. Validity is the notion 
we are really interested in, but we need the notion of tautology as a 
technical notion. 

Proposition 4.15. Every tautology is valid, but not vice versa. 

Proof. Suppose that θ is a tautology, and take an arbitrary interpreta­
tion A. We get a normal truth assignment by stipulating that, for any 
φ, 

F(φ) = 1 if φ is true under A 
= 0 otherwise 

So F(θ) = 1. Hence θ is true under A. Since A was arbitrary, this 
shows that every tautological formula is valid. On the other hand, the 
tautological formula “((∀x)Fx → Fc) is not tautological. � 

A tautological sentence is a valid sentence whose validity is deter­
mined by the sentence’s truth functional structure. If, instead, the 
validity of a sentence’s truth functional structure. If, instead, the va­
lidity of a sentence depends upon the meaning of the quantifiers, the 
sentence won’t be tautological. 

We can test whether a sentence is tautological by the method of 
truth tables, examining each possible way to assign a truth value to 
the sentences’ basic truth functional components. Alternatively, we 
can test the sentence by the search-for-counterexample method. For 
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example, to show that “(((∃x)Fx → (∀x)Gx ∨ (¬Hc → (∃x)Fx))” is 
tautological, we have the following: 

(((∃x)Fx → (∀x)Gx) ∨ (¬Hc → (∃x)Fx)) 

1 0 0 0 0 X 

Definition 4.16. A sentence φ is a logical consequence of a set of 
sentences γ iff φ is true under every interpretation under which all 
the members of γ are true. φ is a tautological consequence of a set of 
sentences γ iff φ is assigned the value 1 by every N.T.A. which assigns 
the value 1 to every member of γ. 

The same reasoning which gave us the last proposition yields the 
following: 

Proposition 4.17. Every tautological consequence of a set of sentences 
is a logical consequence, but not vice versa. 

The following definitions and theorems are lifted directly from the 
sentential calculus: 

Definition 4.18. A sentence is contradictory (or inconsisent) iff it is 
false under every interpretation. A sentence is indeterminate iff it is 
true under some interpretations and false under others. A sentence φ 
implies (or entails) sentence ψ iff ψ is true under every interpretation 
under which φ is true. φ and ψ are logically equivalent iff they are true 
under precisely the same interpretations. An argument is valid iff the 
conclusion is true under every interpretation under which the premises 
are true. A set of sentences is consistent iff there is some interpretation 
under which all its members are true. 

Theorem 4.19. A sentence is a valid iff its negation is contradictory. 

Theorem 4.20. A sentence is contradictory iff its negation is valid. 

Theorem 4.21. A sentence is indeterminate iff its negation is inde­
terminate. 

Theorem 4.22. A conjuction is valid iff both its conjuncts are valid. 

Theorem 4.23. If a conjunction is contradictory if (but not necessarily 
only if ) either of its conjuncts is. 

Theorem 4.24. A disjunction is valid if(but not only if ) either dis­
junct is valid. 

Theorem 4.25. A disjunction is contradictory iff both disjuncts are 
contradictory. 
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Theorem 4.26. A conditional is contradictory iff its antecedent is 
valid and its consequent is a contradiction. 

Theorem 4.27. Two sentences φ and ψ are logically equivalent iff the 
biconditional (φ ↔ ψ) is valid. 

Theorem 4.28. ¬(φ ∨ ψ) is logically equivalent to (¬φ ∨ ¬ψ). 

Theorem 4.29. ¬(φ ∨ ψ) is logically equivalent to (¬φ ∨ ¬ψ). 

Theorem 4.30. φ implies ψ iff the conditional (φ → ψ) is valid. 

Theorem 4.31. A contradiction implies every sentence. 

Theorem 4.32. A valid sentence is implied by every sentence. 

Theorem 4.33. Two sentences are logically equivalent iff each implies 
the other. 

Theorem 4.34. An argument is valid iff the conjunction of the premises 
entails the conclusion. 

Theorem 4.35. An argument is valid iff the conditional whose an­
tecedent is the conjunction of the premises and whose consequent is the 
conclusion is valid. 

Theorem 4.36. φ is a logical consequence of {γ1, γ1, . . . ,γn} if and 
only if the argument with γ1, γ2, . . . ,γn as premises and with φ as 
condition is valid. 

Theorem 4.37. A sentence is a logical consequence of the empty set 
iff it is valid. 

Theorem 4.38. A sentence is valid iff it is a logical consequence of 
that set of sentences. 

Theorem 4.39. Each member of a set of sentences is a logical conse­
quence of that set of sentences. 

Theorem 4.40. If every member of Δ is a logical consequence of Γ 
and φ is a logical consequence of Δ, then φ is a logical consequence of 
Γ. 

Theorem 4.41. If Δ is a subset of Γ and φ is a logical consequence 
of Δ, then φ is a logical consequence of Γ. 

Theorem 4.42. For any sentence ψ and set of sentences Γ, ψ is a 
logical consequence of Γ if and only if Γ and Γ∪{ψ} have precisely the 
same logical consequences. 
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Theorem 4.43. (φ ∧ ψ) is a logical consequence of Γ iff φ and ψ are 
both logical consequences of Γ. 

Theorem 4.44. (φ → ψ) is a logical consequence of Γ iff ψ is a logical 
consequences of Γ ∪ {φ}. 

Theorem 4.45. {γ1, γ2,...,γn} is inconsistent iff (γ1 ∧(γ2 ∧. . .∧γn) . . .) 
is an inconsistent sentence. 

Theorem 4.46. If Γ is an inconsistent set of sentences, then every 
sentence is a logical consequence of Γ. 

Theorem 4.47. A set of sentences Γ is inconsistent iff (P ∧¬P ) is a 
logical consequence of Γ. 

Theorem 4.48. A set of sentences Γ is inconsistent iff every sentence 
is a logical consequence of Γ. 

Theorem 4.49. If Δ is inconsistent and Δ ⊆ Γ, then Γ is inconsistent. 

Theorem 4.50. φ is a logical consequence of Γ iff Γ ∪ {¬φ} is incon­
sistent. 

Theorem 4.51 (Substitution Principle). For any interpretation A, in­
dividual constant c, and formula φ, φx

c is true under A iff A(c) satisfies 
φ under A. 

Proof. I am going to write out this proof in excruciating detail, just 
so you will see what one of these proofs looks like when written out in 
utter detail. I promise not to do it again. 

Let A be an interpretration and c a constant, and let Σ be the set 
of formulas φ such that φx

c is true under A iff A(c) satisfies φ un­
der A. Clearly, {formulas} ⊆ Σ. But also, since {formulas} is the 
smallest class of expressions which contains the atomic formulas and 
which is closed under conjunction, disjunction, formation of condition­
als, formation of biconditionals, negation, universal quantification, and 
existential quantification, if we can show that Σ is a class of expressions 
which contains the atomic formulas and which is closed under conjunc­
tion, disjunction, formation of conditionals, formation of bicondition­
als, negation, universal quantification and existential quantification, 
this will tell us that {formulas} ⊆ Σ. This will tell us that {formulas} 
= Σ, which is what we want. 

Lemma 4.52 (Atomic formlas are in Σ). If φ is an atomic formula, 
then either it has the form Fx or it has the form Fd. If φ has the form 
Fx, then φx is Fc. We have 

c 
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φx is true under A 
c 

iff Fc is true under A

iff A(c) ∈ A(F )

iff A(c) satisfies Fx) under A.


If φ has the form Fd, then φx

c = φ. We have 

φx is true under A 
c 

iff φ is true under A 
iff A(c) satisfies φ under A [by the corollary to the prin­

ciple of bivalence (Corollary 4.12, page 24)]. 

Lemma 4.53 (Σ is closed under conjunction). Suppose that φ and ψ 
are both in Σ. Then (φ� ∧� ψ x

c ), and we have: 

(φ ∧ ψ)x

c is true under A

iff (φx

c ∧ ψ x
c ) is true under A


iff both φx and ψ x is true under A

c c 

iff A(c) satisfies φ under A and A(c) satisfies ψ under 
A [because φ and ψ are both in Σ] 

iff A(c) satisfies (φ ∧ ψ) under A. 

So (φ ∧ ψ) is in Σ. 

Lemma 4.54 (Σ is closed under disjunction). Suppose that φ and ψ 
are both in Σ. Then (φ� ∨� ψ)x

c is equal to (φx

c ∨ ψ x
c ), and we have: 

(φ ∨ ψ)x

c is true under A

iff (φx

c ∨ ψ x
c ) is true under A


iff either φx and ψ x is true under A

c c 

iff either A(c) satisfies φ under A or A(c) satisfies ψ 
under A [because φ and ψ are both in Σ] 

iff A(c) satisfies (φ ∨ ψ) under A. 

So (φ ∨ ψ) is in Σ. 

Lemma 4.55 (Σ is closed under the formation of conditionals). Sup­
pose that φ and ψ are both in Σ. Then (φ� →� ψ)x

c is equal to (φx

c → 
ψ x

c ), and we have: 

(φ → ψ)x

c is true under A 
iff (φx

c → ψ x
c ) is true under A 

iff either φx is not true under A or ψ x is true under A 
c c 

iff either A(c) does not satisfy φ under A or A(c) does 
satisfies ψ under A [because φ and ψ are both in Σ] 

iff A(c) satisfies (φ → ψ) under A. 

So (φ → ψ) is in Σ. 
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Lemma 4.56 (Σ is closed under the formation of biconditionals). 
Suppose that φ and ψ are both in Σ. Then (φ� ↔� ψ)x

c is equal to 
(φx

c ↔ ψ x
c ), and we have: 

(φ ↔ ψ)x

c is true under A

iff (φx

c ↔ ψ x
c ) is true under A


iff φx and ψ x are either both true under A or both false 
c c 

under A 
iff either A(c) satisfies both φ and ψ under A or A(c) 

satisfies neither φ nor ψ under A [because φ and ψ 
are both in Σ] 

iff A(c) satisfies (φ ↔ ψ) under A. 

So (φ ↔ ψ) is in Σ. 

Lemma 4.57 (Σ is closed under negation). Suppose that φ is in Σ. 
Then (¬φ)x

c is equal to ¬(φx

c ), and we have: 

(¬φ)x

c is true under A

iff ¬(φx

c ) is true under A

iff φx is not true under A


c 
iff A(c) does not satisfy φ under A [because φ and ψ are 

both in Σ] 
iff A(c) satisfies ¬φ under A. 

So ¬φ is in Σ. 

Lemma 4.58 (Σ is closed under universal quantification). Suppose φ 
is in Σ. ((∀x)φ)x

c is equal to (∀x)φ, and we have: 

((∀x)φ)x

c is true under A 
iff (∀x)φ is true under A 
iff A(c) satisfies (∀x)φ under A [by the corollary to the 

principle of bivalence (Corollary 4.12, page 24)]. 

So (∀x)φ is in Σ. 

Lemma 4.59 (Σ is closed under existential quantification). Suppose φ 
is in Σ. ((∃x)φ)x

c is equal to (∃x)φ, and we have: 

((∃x)φ)x

c is true under A 
iff (∃x)φ is true under A 
iff A(c) satisfies (∃x)φ under A [by the corollary to the 

principle of bivalence (Corollary 4.12, page 24)]. 

So (∃x)φ is in Σ. � 

If our language has just three predicates, “F ,” “G,” and “H,” then 
any interpretation of the language divides the universe into 8 cells, 
numbered 1 through 8 in the figure (where some of the cells may be 
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empty). If two members of the universe lie in the same cell, they satisfy 
all the same formulas. This observation is perfectly general: 

Theorem 4.60 (Indiscernibility Principle). Given an interpretation 
A, let us say that two elements of |A| are in the same cell if they are 
in the extensions in A of all the same predicates. Any two members of 
|A| that are in the same cell satisfy all the same formulas under A. 

Proof. Suppose that a and b are in the same cell. Let Σ be the set of 
formulas φ such that a satisfies φ under A iff b satisfies φ under A. We 
want to see that Σ is equal to the set of all formulas. To show this, we 
need to show that Σ contains the atomic formulas and that it is closed 
under conjunction, disjunction, formation of conditionals, bicondition­
als, negation, universal quantification, and existential quantification. 

Lemma 4.61 (Atomic formulas of the form Px are in Σ). Because a 
and b are in the same cell, we know that a ∈ A(P ) iff b ∈ A(P ). Thus 
a satisfies Px under A iff b satisfies Px under A. 

Lemma 4.62 (Atomic sentences—formulas of the form Pc—are in Σ). 
If Pc is true, a and b both satisfy it. It it is false, neither does. 

Lemma 4.63 (Σ is closed under conjunction). Suppose that φ and ψ 
are both in Sigma. We have 

a satisfies (φ ∧ ψ) under A 
iff a satisfies both φ and ψ under A 
iff b satisfies both φ and ψ under A [because φ and ψ are 

both in Σ] 
iff b satisfies (φ ∧ ψ) in Σ. 

So (φ ∧ ψ) is in Σ. 

Lemma 4.64 (Σ is closed under disjunction, formation of conditional, 
and formation of biconditionals.). Similar. 

Lemma 4.65 (Σ is closed under universal quantification.). Suppose 
that φ is in Σ. We have 

a satisfies (∀x)φ under A 
iff (∀x)φ is true under A [by the corollary to bivalence, 

(Corollary 4.12, page 24)] 
iff b satisfies (∀x)φ under A [by the corollary to bivalence 

again]. 

So (∀x)φ in in Σ. 

Lemma 4.66 (Σ is closed under existential quantification). Similar. 
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To see whether a sentence is true under an interpretation, you have to 
see what the universe of the interpretation is, and you have to see what 
values the interpretation assigns to the constants and predicates that 
appear within that sentence. That’s all you have to look at. You don’t 
have to look at the values the interpretation assigns to the constants 
and predicates that don’t even occur within the sentence. The following 
theorem makes this observation precise: 

Theorem 4.67 (Locality Principle). Let A and B be two interpreta­
tions with the same universe of discourse that assign the same values 
to all the constants and predicates that occur in the formula φ. Then 
precisely the same individuals satisfy φ under A and under B. 

Proof. Given interpretations A and B with the same universe of dis­
course, let Σ = {formulas φ: if A and B assign the same values to all 
the constants and predicates that occur in φ, then the same individuals 
satisfy φ under A and under B}. We want to show that Σ is the set of 
all formulas. To show this, it will be enough to show that Σ contains 
the atomic formulas and that it is closed under conjunction, disjunc­
tion, formation of conditionals, formation of biconditionals, negation, 
universal quantification, and existential quantification. 

Lemma 4.68 (Σ contains the atomic formulas). Let φ be an atomic 
formula such that any constant or predicate that appears in φ is assigned 
the same value by A and by B. Take a ∈ |A|. Either φ has the form 
Fx or else it has the form Fc. 

If φ has the form Fx, we have 

a satisfies φ under A 
iff a ∈ A(F ) 
iff a ∈ B(F ) 
iff a satisfies φ under B. 

If φ has the form Fc, we have 

a satisfies φ under A 
iff A(c) ∈ A(F ) 
iff B(c) ∈ B(F ) 
iff a satisfies φ under B. 

Lemma 4.69 (Σ is closed under conjunction). Suppose that φ and ψ 
are both in Σ, and take a ∈ |A|. Suppose that any constant or predicate 
that occurs in (φ ∧ ψ) is assigned the same value by A and B. Then 
every constant or predicate that occurs in φ is assigned the same value 
by A and by B, so that, since φ is in Σ, a satisfies φ under A iff a 
satisfies φ under B. Similarly for ψ. Hence 
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a satisfies (φ ∧ ψ) under A

iff a satisfies both φ and ψ under A

iff a satisfies both φ and ψ under B

iff a satisfies (φ ∧ ψ) under B.


Lemma 4.70 (Σ is closed under disjunction, formation of condition­
als, formation of biconditionals, negation, universal quantification, and 
existential quantification). Similar. � 

The Indiscernibility Principle talks about members of the domain 
of a single interpretation. There is a generalization of it that applies 
across intepretations: 

Theorem 4.71 (Generalized Indiscernibility Principle). Let A and B 
be interpretations of a MPC language L . Suppose that precisely the 
same cells are nonempty in A and in B. That is, for each element a 
of |A|, there is an element of b of |B| such that, for any predicate P 
of L , a ∈ A(P ) iff b ∈ B(P ), and likewise, for each element b of |B|, 
there is an element a of |A| such that a and b are in the extensions 
of the same predicates in their respective models. Suppose further that, 
for each constant c of L , A(c) is in the same cell in A that B(c) is in 
B. Then the same sentences are true in A and in B 

Proof. We prove something stronger, namely, that if a occupies the 
same cell in A that b occupies in B, then a satisfies all the same formulas 
in A that b satisfies in B. To show this, let Σ be the set of formulas 
φ such that, whenever an element a of |A| occupies the same cell in 
A that b ∈ |B| occupies in B, a satisfies φ in A iff it satisfies φ in 
B. We intend to show that every formula is in Σ, by showing that Σ 
contains the atomic sentences and is closed under the seven procedures 
for building larger formulas out of smaller ones. 

Lemma 4.72 (Atomic formulas of the form Px are in Σ). What it 
means to say that a occupies the same cell in A that b occupies in B 
is that, for each predicate P, a ∈ A(P ) iff b ∈ B(P ). Consequently, a 
satisfies Px under A iff b satisfies Px under B. 

Lemma 4.73 (Atomic formulas of the form Pc are in Σ). By hy­
pothesis, A(C) occupies the same cell in A that B(C) occupies in B 
Consequently, we have: 

a satisfies Pc in A

iff Pc is true in A

iff A(c) ∈ A(P )

iff B(c) ∈ B(P )

iff Pc is true in B
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iff b satisfies Pc in B(P ) 

Lemma 4.74 (Σ is closed under conjunction). Suppose that ψ and 
θ are in Σ and that a and b occupy the same cells in their respective 
interpretations. We have: 

a satisfies (ψ ∧ θ) in A 
iff a satisfies both ψ and θ in A 
iff b satisfies both ψ and θ in B [because ψ and θ are in 

Σ] 
iff b satisfies (ψ ∧ θ) in B 

Lemma 4.75 (Σ is closed under disjunction, conditionals, bicondi­
tional, and negations). Similar. 

Lemma 4.76 (Σ is closed under existential quantification). Suppose 
that ψ is in Σ, and that a and b occupy the same cells in their respective 
models. Suppose that a satisfies (∃x)ψ in A. Then (∃x)ψ is true in A, 
which means that there is an element c of |A| that satisfies ψ in A. By 
hypothesis, there is an element d of |B| that occupies the same cell in 
B that c occupies in A. Because ψ is in Σ, it follows that d satisfies 
ψ in B. Consequently, (∃x)ψ is true in B, and so b satisfies (∃x)ψ in 
B. The converse - if b satisfies (∃x)ψ in B, a satisfies (∃x)ψ in A ­
is similar. 

Lemma 4.77 (Σ is closed under universal quantification). � 

If our language has n predicates, then an interpretation A of the 
language partitions the universe of A into 2n cells, which we can number 
1 through 2n . (Some of the cells may be empty.) Form an interpretation 
B as follows: 

|B| = {numbers k: under A, the kth cell is empty}. 
B(F ) = {numbers k: the kth cell is a nonempty part of A(F )}, 

for F a predicate. 
B(c) = the number k such that A(c) is in the kth cell, for c an 

individual constant. 

It follows from the Generalized Indiscernibility Principle that the 
same sentences are true in A and in B. Let us call B the canonical 
model associated with A. 

As an example, let L be the language whose predicates are “M”, 
“W”, and “F” and whose only individual constant is “t”’, and let A be 
the interpretation of L given by: 
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|A| = {animals} 
A = {mammals} 
A = {warm-blooded animals} 
A = {animals that fly} 
A = Termin the dog 

We assign numbers to the cells by specifying, for each number be­
tween 1 and 8, the combination of atomic and negated atomic formulas 
of the form Px that are satisfied by the occupants of that cell. Thus 

Occupants of cell 1 satisfy “(Mx ∧ (Wx ∧ Fx)).” 
Occupants of cell 2 satisfy “(Mx ∧ (Wx ∧ ¬Fx)).” 
Occupants of cell 3 satisfy “(Mx ∧ (¬Wx ∧ Fx)).” 
Occupants of cell 4 satisfy “(Mx ∧ (¬Wx ∧ ¬Fx)).” 
Occupants of cell 5 satisfy “(¬Mx ∧ (Wx ∧ Fx)).” 
Occupants of cell 6 satisfy “(¬Mx ∧ (Wx ∧ ¬Fx)).” 
Occupants of cell 7 satisfy “(¬Mx ∧ (¬Wx ∧ Fx)).” 
Occupants of cell 8 satisfy “(¬Mx ∧ (¬Wx ∧ ¬Fx)).” 

There are animals that occupy each of the cells other than 3 and 4. 
Bats, for example, occupy cell 1, dogs cell 2, canaries cell 5, penguins 
cell 6, butterflies cell 7, and banana slugs cell 8. Tarmin is in cell 2. 

Our canonical model B associated with A looks like this: 

|B| = {1,2,5,6,7,8}

B(“M ��) = {1,2}

B(“W ��) = {1,2,5,6}

B(“F ��) = {1,5,7}

B(“t��) = 2


Theorem 4.78. Given a language with finitely many predicates, a sen­
tence is valid iff it is true in all the canonical models for that language. 
A sentence is a logical consequence of a set of sentences Γ iff the sen­
tence is true in every canonical model in which each member of Γ is 
true. 

A sentence containing n predicates is valid iff it is true under every 
interpretation whose universe is contained in the set {1, 2, 3, . . . , 2n}. 

How many canonical models are there? Given a language L with n 
predicates and k constants, the domain of a canonical model which will 
be a nonempty subset of {1, 2, 3, . . . , 2n} there are 22

n 
such nonempty 

subsets. If the model has i nonempty cells, there will be ik ways to 
apportion k constants into nonempty cells. Consequently, the total 
number of canonical models for L will be: 
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2
n 

� � 

� i 
· ik 

2n 
i=1 

where 
2

i 
n is the binomial coefficient, which counts the number of ways 

to choose i elements from a 2n element set. Thus there are a great many 
canonical models. Even so, there are only finitely many, and each of 
them is a finite structure, so we could, in principle, test a sentence for 
validity by examining all the canonical models to see if we can find one 
in which the given sentence is false. This gives us the following: 

Corollary 4.79. There is an algorithm—that is, a mechanical procedure— 
for testing whether a sentence is valid. 

The algorithm just desribed is not at all practical, for the canonical 
interpretations are far too numerous for it to be feasible to examine 
them all. The theoretical possibility of testing a sentence φ for validity 
by examining all the models of φ whose universe is contained within 
{1, 2, 3, . . . , 2n} remains only that, a theoretical possibility. 

In the next chapter, we are going to learn a more practical method 
for showing valid sentences valid. 

If our language has n predicates and k constants, we can write down, 
for each interpretation of the language, a canonical description that 
completely describes the model. The canonical description is a long 
conjunction with two kinds of conjuncts. First, there are conjuncts that 
tell us, for each individual constant, which cell the individual named by 
the constant occupies. For our model above that had as its sole constant 
“t” denoting Tarmin, the conjunct would be “(Mt ∧ (Wt ∧ ¬Ft)).” 
Second, for each of the cells not occupied saying whether the cell is 
empty. Thus for cell 1, the conjunct is “(∃x)(Mx ∧ (Wx ∧ Fx)),” 
whereas for cell 3 the conjunct is “¬(∃x)(Mx ∧ (¬Wx ∧ Fx)).” The 
canonical description of the model is the following long sentence: 

(Mt ∧ (Wt ∧ ¬Ft) ∧ ((∃x)(Mx ∧ (Wx ∧ Fx)) 
∧(¬(∃x)(Mx ∧ (¬Wx ∧ Fx)) ∧ (¬(∃x)(Mx ∧ (¬Fx ∧ 

¬Wx)) 
∧((∃x)(¬Mx∧(Wx∧Fx))∧((∃x)(¬Mx∧(Wx∧¬Fx)) 
∧((∃x)(¬Mx ∧ (¬Wx ∧ Fx)) 
∧(∃x)(¬Mx ∧ (¬Wx ∧ ¬Fx))))))))). 

We know from the Generalized Indiscernibility Principle that deter­
mining which cells the individuals named by the constants are in and 
which of the remaining cells are nonempty is enough to decide which 
sentences are true. It follows, for every sentence, a canonical descrip­
tion entails either the sentence or its negation. What we say is that 
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the canonical descriptions are complete. Every complete, consistent 
sentence is logically equivalent to a canonical description. 

For a given sentence φ (still talking about a language with n predi­
cates and k constants), the normal form of φ is the disjunction of all 
the canonical descriptions of models in which φ is true. For any model 
A of φ, the canonical description of A will be one of the disjuncts of the 
normal form of φ, and so the normal form of φ will be true in A. Con­
sequently, φ entails its normal form. Moreover, each of the disjuncts 
of the normal form of φ entails φ, and so their disjunction entails φ. It 
follows that a sentence is logically equivalent to its normal form. (If φ 
happens to be a contradiction, there will not be any disjuncts. In this 
case, we can choose, say “(∃x)(Mx ∧¬Mx)” to be the normal form of 
φ. 

Every sentence is logically equivalent to its normal form, and no two 
normal forms are logically equivalent, since they are true in different 
models. If there arem canonical models, there will be 2m normal forms, 
one for every subset of the m models. It follows that it is possible to 
give a list of 2m sentences such that no two sentences on the list are 
logically equivalent and such that every sentence of the language is 
logically equivalent to a sentence on the list. 


