Predi cate Cal cul us

The I ogic we have learned so far goes only a little bit
beyond Aristotle's logic. The great |eap forward was to extend
the logic to enconpass relations as well as properties.

Consi der the sentence "lsaac is a son of Abraham"™ W can
think of the sentence as attributing a property to |saac, so
that, if we use "i" to denote Isaac and "A" to designate the sons
of Abraham we can synbolize the sentence "Ai." W may al so think
of the sentence as attributing a property to Abraham so that,
using "a" to denote Abrahamand "I" to designate |saac's parents,
we have "la." But we may al so think of the sentence as about both
Abraham and | saac, saying of themthat they stand in a certain
relation. For this we need to go beyond the nonadic predicate
cal cul us, where we could only talk about properties, not about
rel ations.

Let "S" denote the son-of relation. Then we can synbolize
"Isaac is a son of Abrahant as "Sia." Using "ni for "lshnael, k"

we'll wite "Smp" for "lIshnmael is a son of Abraham" "lsaac is a
son of Sara" will be "Sis." "lIshmael is a son of Abraham but not
of Sara" will be "(Sma O -Sns)."

To say "Abraham has a son" will be "([k)Sxa." To say "Abra-

hamis a son" is "([k)Sax." To say "Abraham and Sara both have
sons" will be "((Ik)Sxa O ([k)Sxs)," whereas to say "Abraham and

Sara have a son" will be "(Ik)(Sxa O Sxs)." "Every son of Sara is
a son of Abraham but not every son of Abrahamis a son of Sara"

will be "((Ox)(Sxs - Sxa) O -(0Ox)(Sxa - Sxs))."

To say "lsaac is a son of Abraham"™ we wite "Sia.” If we
say "Everyone is a son of Abraham" we are saying that everyone
has the property that the sentence "lIsaac is a son of Abrahant
attributes to Isaac. To express this, we first replace the
constant "i" by the variable "x" to get an open sentence which
expresses the property of being a son of Abraham Then, to say
t hat everyone has this property, we prefix the universal quanti -

fier "(0Ox)." The (closed) sentence "(0Ox)Sxa" says that everyone
is a son of Abraham

W wite "([k)Sxa" to say that Abraham has a son; the
sentence attributes to Abrahamthe property of having a son. How
woul d we attribute this property to everybody, saying that
everyone has a son? W want to form an open sentence and prefix a
uni versal quantifier, but we can't do this the way we did before,
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by substituting the variable "x" for "a" and prefixing "(0Ox)."

This would give "(0Ox)([k)Sxx." But there is nothing about this
sentence to indicate that it neans "Everyone has a son," rather
than "Everyone is a son" or "Sonmeone is his own son.” To properly
represent "Everyone has a son," we require a second variable. To
represent the property of having a son, substitute a new variable

for "a" in "([X)Sxa," getting the open sentence "([Ik)Sxy." To say
t hat everyone has a son, prefix the universal quantifier "(0Oy),"
getting "(0Oy) (k) Sxy."

To say "Everyone is a son," take the sentence "([k)Sax,"
whi ch says that Abrahamis a son, and substitute "y" for "a,

getting an open sentence "([k)Syx," which represents the property
of being a son. Then prefix the universal quantifier "(0Oy)" to
get "(0y) (LX) Syx."

"Soneone is his own son" would naturally be said "([k)Sxx."
As we shall see below, "(0Ox)(Ix)Sxx" also nmeans that someone is
his own son, though it's a silly way to say it, since the initia
"(Ox)" is entirely superfluous.

We' Il synbolize "John |oves Mary" as "Ljm" and "John is
| oved by Mary" as "Lnj." "John | oves soneone” will be "(IK)Ljx,"
and "Everyone | oves soneone” will be "(0Oy)(IXx)Lyx"; "There is
sonebody who | oves sonmeone" is "([Oy)([X)Lyx." "John is |oved by
sonmeone” wll be "(IX)Lxj," while "Everyone is |oved by soneone"
is "(0Oy) (k) Lxy"; "Somebody is |oved by soneone"” is
"(y) (IX) Lxy," which is logically equivalent to the formula that
synbol i zes " Sonebody | oves soneone.” "John | oves everyone" is
"(Ox)Ljx." "There is sonmeone who | oves everyone" is
"(Oy) (Ox)Lyx," while "Everyone | oves everyone" is "(0Oy)(0Ox)Lyx."
"Mary is | oved by everyone" is "(0Ox)Lxm" "There is soneone who
is loved by everyone" is "(0Oy)(Ox)Lxy." "Everyone is |oved by

everyone" is "(0Oy)(Ox)Lxy," which is logically equivalent to the
sentence that synbolizes "Everyone | oves everyone."

"John | oves sonmeone who |oves Mary" is "([X)(Ljx O Lxm."
"Soneone | oves sonmeone who |oves Mary" is "(LOy)(X)(Lyx OLxnm."
"Soneone | oves someone who | oves soneone"” is "([k)(Oy) (k) (Lyx O
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Lxz)." "Everyone | oves someone who |oves Mary" is "(0Oy) (k) (Lyx
O Lxn)."

"John | oves everyone who | oves everyone" can be paraphrased
"For any vy, if y loves everyone, John loves y." "y |l oves every-
one" is "(DOx)Lyx," and "John loves y" is "Ljy," so that "John
| oves everyone who | oves everyone" is "(Oy)((Ox)Lyx - Ljy)."
"Everyone | oves everyone who | oves everyone" is
"(Oz)(Oy) ((Ox)Lyx - Lzy)," while "Soneone | oves everyone who
| oves everyone" is "([k)(0Oy)((Ox)Lyx - Lzy)."

“I'f John | oves anyone, he loves Mary" is "((X)Ljx - Ljm."

"Everyone who | oves anyone |oves Mary" is "(0Oy)((k)Lyx - Lym."
"John loves hinself" is "Ljj." "If John | oves anyone, he |oves

himsel f" is "((IXK)Ljx - Ljj)." "Everyone who | oves anyone | oves
hinmsel f" is "(0Oy)((X)Lyx - Lyy)."

Vari abl es don't name anything. They indicate places where a
name has been taken froma sentence. W have different variables
because we have different nanes, to indicate the places from
whi ch the different nanmes have been taken. The variables are
i nt erchangeabl e. "John | oves soneone" can be witten "([k)Ljx" or
"(y)Ljy." "Everyone | oves soneone"” can be witten "(0Oy) ([x)Lyx"
or "(0Ox)(Oy)Lxy" or "DOz)(IX)Lzx" or (0Oz)(0y)Lzy."

We now give an official description of the formal |anguages
we shall be using. In addition to the famliar "0O" "0O" ">,"

"o, "y O, "gt "(," and ")," a language for the predicate
cal cul us contains synbols of the follow ng sorts:

I ndi vi dual constants, usually | owercase letter
fromthe begi nning of the al phabet, sometinmes with
nuneri cal subscripts, which serve the role of
proper nanmes in English; an individual constant
names an i ndi vi dual .

Vari abl es, usually |l owercase letters fromthe end
of the al phabet, sonetines with nunerical sub-
scripts, which serve nore-or-|less the role of

per sonal pronouns. The individual constants and
the variables are referred to as the individua
synbol s.
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One-pl ace predicates, usually uppercase letters,
sonmetimes with nunerical subscripts, which play
the roles played by English intransitive verbs,

adj ectives, and conmon nouns; 1-place predicates
represent properties and actions.

Two- pl ace predicates, usually uppercase letters,
sonmetimes with nunerical subscripts, which serve
the functions served by transitive verbs and by

phrases like "is taller than" and "is a daughter
of . "

Thr ee-pl ace predicates, usually uppercase letters,
sometimes with nunerical subscripts, which behave
like " i s between and " and

gave to

And so on. For each positive nunber n, there is a
category of n-place predicates.

The | anguage has to have infinitely nmany variables, but, other
than that, any of these categories can be enpty, though the

| anguage has to have at | east one predicate. W assune that none
of these categories of expressions overl ap.

An atom c fornmula consists of an n-place predicate foll owed
by n individual synbols. For exanmple, "Lxy," "Lyx," "Ljx," and
n Lj m n

The formul as conprise the small est class of expressions
whi ch

contains the atom c fornul as;

contains (¢ Ovy), (¢ Ov), (¢ - y), and (¢ o vy),
whenever it contains ¢ and y; and

contains -¢, (Ov)e, and (v)e, for each variable v,
whenever it contains o.

Uni que Readability Lemma. A fornmula is built up
out of atomc forrmulas in a uni que way.
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An occurrence of a variable v in a fornula is bound iff it
occurs within sone subfornula that begins with either (0Ov) or
(Ov). If not bound, free. Afornmula with no free variables is
called a sentence. For exanple, in "((0Ox)Fxy O (Oy)Fxy)," the
first two occurrences of "x" are bound and the | ast one free,
while the first occurrence of "y" is free and the other tw are
bound. Thus the quantifier "(0Ox)" at the begi nning of "(0Ox)Fxy"
bi nds the occurrence of "x" in "Fxy," but |eaves the occurrence
of "y" free.

Were o is a formula, v a variable, and t an indivi dual
synbol, we wite ¢'/¢ for the result of replacing each free
occurrence of vin ¢ by t.

The term nol ogy fromthe nonadi c predicate cal cul us — such
ternms as "disjunction,” "nolecular formula," and "universa
formula”™ — 1is carried over directly.

The i deas behind the semantics for the predicate cal cul us
are just the same as the ideas behind the semantics for the
nonadi ¢ predi cate cal cul us, but, because of the presence of the
extra variables, the details are quite a bit nore conplicated. So
I want to put it off as long as possible. Hence, before we talk
about semantics, let's talk alittle bit about translations.

There are two principal principles governing translations.
The first is that universal statenents in English are generally
rendered by a predicate cal cul us sentence consisting of a univer-
sal quantifier followed by a conditional. Thus "All squirrels are
manmmal s" is translated "(Ox)(Sx - M)." For "(Ox)(Sx - M)" to

be true, everything nust satisfy "(Sx - M)," which is to say
that nothing satisfies "Sx" wi thout also satisfying "M"; which
means that nothing is a squirrel which is not a mammal ; which
means that "All squirrels are manmal s" is true.

"Everyone who loves Jill loves Clarissa" is "(0Ox)(Lx] -
Lxc).: "Every son of Sara is a son of Abrahant is "(0Ox)(Sxs -
Sxa)." "Everyone who sings and plays the ukelele has friends" is
"(Ox)((Sx O W) - (Oy)Fyx)." In each case, we see the pattern
uni versal quantifier followed by a conditional. "All As are Bs)"
is "(Ox)(AXx - Bx)."
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Rarely we see a universal quantifier followed by sonething

other than a conditional. "Everyone is either a man, a wonman, or
a child" is translated by a universal quantifier followed by a
disjunction, "(Ox)((M O W) 0O Cx)." "Everyone drank, snoked,

and had fun" is a universal quantifier followed by a conjunction,

"(Ox)((Dx O Sx) O Fx)." But such cases are exceptional. Wenever
your translation is a universal quantifier followed by sonething
other than a conditional, |ook again, nore carefully, for such a
translation is seldomright.

The second principal principle is that English existential
sentences — that is, English sentences that nake existence
claims — are synbolized by an existential quantifier followed by

a conjunction. "([X)(Sx O Fx)" translates "Some squirrels can
fly," since it is true if and only if something satisfies "Sx"
and "Fx," that is, it is true if and only if there is sonething
that is both a squirrel and a thing that flies.

"Soneone | oves both Jill and Carissa” is "([k)(Lxj 0O Lxc)."
"Sone sons O Sara are sons of Abraham' is "([Ik)(Sxs O Sxa)."
"Sone people who play the ukelele have friends" is "([k)(Ux O
(Oy)Fyx)." In each case, we see a pattern: existential quantifier
foll owed by conjunction. "Sone As are Bs" is "([k)(Ax O Bx)."

There are exceptions to this pattern. "There are sonme who

nei ther drank nor snoked" is "([k)-(Dx O Sx)." But such excep-
tions are rare.

The only difference between the English sentence "Sone
squirrels can fly" and "Al'l squirrels can fly" is that the word
"sone" has been replaced by "all." So we would naturally antici-
pate that the only difference between their translations is that
the existential quantifier "(IX)" is replaced by the universal
quantifier "(0Ox)." But this would be a m stake. There are two
di fferences between the sentences. The first is an existentia
gquantifier followed by a conjunction, "(IX)(Sx O Fx)," whereas
the second is a universal quantifier followed by a conditional,
"(Ox)(Sx - Fx)."™ Just replacing the existential by the universal
quantifier gives "(Ox)(Sx O Fx)," which isn't what we want; it
says that everything is a flying squirrel.
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When | say "Everyone drank and snoked and had fun," | don't
mean that everyone in the whole world drank, snoked, and had fun,
| nean that everyone at the party did so. In this particular
context, "everyone" neans "every person at the party," so, when
we translate the sentence, we need to understand "(0Ox)" in such
a way that (Ox)e is true if and only if everyone at the party
satisfies ¢o. Wien | utter the sentence "Everyone drank and snoked
and had fun,” it's within a context in which it's clear that the
only individuals we are interested in are the people at the
party. The set of people at the party is said to be the universe

of discourse, and "(Ox)" is understood in such a way that (0Ox)o
is true if and only if every nenber of the universe of discourse

satisfies .

When we transl ate "Sone people who play the ukel el e have
friends" as "([k)(Ux O (Oy)Fxy)," we are understanding "([X)" in
such a way that (X)e is true if and only if some people satisfy
¢; that is, we are taking our universe of discourse to consist of
people. If we didn't want to limt our horizon in this way, we
coul d take our universe of discourse to include everything and

translate the sentence "(Ik)(Px O (Ux O (Oy)Fxy))."

"All" and "only" are related in the sane way as "if" and
"only if." "All As are Bs" neans "For any x, x is a B if x is an

A" "(OX)(AX - Bx)." "Only As are Bs" neans "For any X, x is a B
only if xis an A" "(Ox)(Bx - Ax)." Thus "All Sola's pups can
fly" is "(Ox)(Pxs - Fx)," whereas "Only Sola's pups can fly" is
"(Ox)(Fx - Pxs)." "All and only Sola's pups can fly" can be
witten as the conjunction "All Sola's pups can fly and only
Sola's pups can fly'™ "((Ox)(Pxs - Fx) O (Ox)(Fx - Pxs)"; or it

can be witten nore concisely as "(Ox)(Pxs « Fx)." "OF all the
dogs that live on Jefferson Street, only Sola's pups can fly" is
"For all x, if x is a dog that lives on Jefferson Street, then x

can fly only if x is one of Sola's pups,” "(Ox)((Dx OJx) - (Fx
- Pxs))."

The quantifiers interact wwth the sentential cal cul us
connectives in just the ways you' d expect. "Not every squirre
flies" is the negation of "Every squirrel flies," nanely,

"S(Ox)(SX - Fx)." "No squirrel flies,"” which is the negation of
"Sonme squirrel flies," is "=([Ik)(Sx O Fx)." "Not every squirrel
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flies, but some do" is a conjunction, "(=(0Ox)(Sx - Fx) O (IX)(Sx
O Fx))." "Melissa won't dance unl ess everyone does" is a condi -

tional "(-(Ox)Dx -Dm)." "Melissa will conme to the party if al
the boys that hang out at Spi ke's Place cone, but, otherw se,

she'l'l stay honme and watch TV' is "(((Ox)((Bx O Sx) - Px) - Pm
O(~(Ox)((Bx OSx) - Px) - (HhOWY))."

The trick to successful translation is to work in stages.

For exanple, using "A/" "H" and "C, " respectively, to translate
"admires," "hires," and "is a chauffeur,” let's translate "Every-
one who hires a chauffeur is admred by everyone who doesn't hire

a chauffeur." The sentence is universal, its translation wl]l
consi st of a universal quantifier followed by a conditional,

"(Ox)(x hires a chauffeur - x is admred by everyone who doesn't
hire a chauffeur)."” "x hires a chauffeur” is existential "(0Oy)(y

is a chauffeur Ox hires y)," that is "(y)(Cy O Hxy)." Wien we
rewmwite "X is admred by everyone who doesn't hire a chauffeur”
in the active voice as "everyone who doesn't hire a chauffeur

admres x," we see that it is a universal statenent, "(0Oy)(y
doesn't hire a chauffeur - y admires x)." 'y doesn't hire a
chauffeur"” is a negated existential claim "-([k)(Cz O Hyz)."
Putting the whole thing together, we get "(Ox)((Oy)(Cy O Hxy) -
(Oy) (~(k) (Cz O Hzy) - Ayx))."

"Sonme admire all those who admire thensel ves, but sone
admre only those who don't admre thenselves" is a conjunction.

The first conjunct is existential, "([X)x admres all those who
admre thenselves." "x admres all those who admre thensel ves”
is universal, "for any y, if y admres herself, then x admres

y," "(dy)(Ayy - Axy)." The second conjunct is |ikew se existen-

tial, "(x)x admres only those who don't admre thenselves." "X
admres only those who don't admre thenselves” is universal,
"for any y, x admres y only if y does not admre herself,"

"(Oy) (Axy - =Ayy)" Putting the pieces together, ((Ik)(Oy)(Ay -
Axy) O (Oy) (Axy - -Ayy))."

"Everyone who dat ed soneone who dated either Harry or
someone who dated Harry should be tested" is "(0Ox)(x dated

sonmeone who dated either Harry or soneone who dated Harry -
Tx)." "x dated soneone who dated either Harry or soneone who

dated Harry" is (Oy)(y dated either Harry or someone who dated



Predi cate Calculus, p. 9

Harry O x dated y)." 'y dated either Harry or soneone who dated
Harry" is a disjunction "(Dyh Oy dated soneone who dated
Harry)." "y dated sonmeone who dated Harry" is "([z)(Dzh O Dyz)."

So the sentence is "(Ox)((Qy)((Dyh O (z)(Dzh O Dyz)) O Dxy) -
Tx)."

For the nost part, translation, while it nmay be conplicated,
is pretty straightforward. "Every,"” "all,"” and "each" are trans-
| ated by universal quantifiers (generally followed by condition-
als), while "sone," "one," "at |east one," "there exists,"” and
"there are" are synbolized by existential quantifiers (generally
foll owed by conjunctions).

"Any" presents special problens. In a sinple sentence, "any
is universal; "Any dog can fly" is "(Ox)(Dx - Fx)." Wen "any"
occurs in the consequent of a conditional, it's again translated
"all"; "If Tarmn can fly, any dog can fly" is "(Ft - (Ox)(Dx -
Fx))." Wien "any" occurs in the antecedent of a conditional and
it's paired with a pronoun that appears in the consequent, it's
again translated "(Ox)"; "If any dog can fly, she is exception-
ally agile" is "(Ox)((Dx OFx) - Ax)." On the other hand, when
"any" occurs in the antecedent of a conditional and it doesn't
bind a quantifier that appears in the consequent, it's npst
natural to translate it as existential. "If any dog can fly,
Tarmin can" is "((X)(Dx OFx) - Ft)." Contrast "If any dog can
fly, Tarmn can" with "If every dog can fly, Tarm n can," trans-
lated "((Ox)(Dx - Fx) - Tx)." You'd say the former if you be-
lieved that Tarmn is such a clever and agile dog that she'd
learn to fly if any dog would; the latter is true just because
Tarmin is a dog.

Sonetinmes, in conplicated sentences, you can get "any
transl ated both as existential and as universal. "Any dog who
chases any dog who chases any rabbit will be put in the pound" is

"(Ox)((Dx O (y)((Dy O(@)(Rz OCyz)) OC) - Px)." Contrast it
with the sentence "Sone dog who chases sone dog who chases sone

rabbit will be put in the pound,” which is (X)((Dx O (Oy)((Dy O
() (Rz O0Cyz) OCxy) OPx)," and with "Every dog who chases
every dog that chases every rabbit will be put in the pound,"”
V\hgch is "(Ox)((Dx O (Oy)((Dy O (02)(Rz - &z)) - KXxy)) -
Px)."
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Bertrand Russell's work suggests an admrably sinple rule
for translating "any": "Any" should always be transl ated by an
initial universal quantifier; if there are several "any"s they
shoul d be translated by a block of initial universal quantifiers.
Thus "If Tarmn can fly, any dog can" would be "(Ox)(Ft - (Dx -
Fx))," which is, as we shall see below, logically equivalent to
"(Ft - (Ox)(Dx - Fx))."™ "If any dog can fly, Tarm n can" should
be "(Ox)((Dx OFx) - Ft)," which is logically equivalent to
"((IX)(Dx OFx) - Ft)." "Any dog who chases any dog who chases
any rabbit will be put in the pound” is "(0Ox)(0Oy)(0Oz)(((Dx O (Dy
O(Rz O0Cyz))) OXxy) - Px)," which is logically equivalent to
t he synbolization we got before.

The way Russel |l thought about "any" isn't quite the way |I've
been describing. Russell thought that the word "any" was a
schematic term which could be filled in any way you |iked. Thus
the word "any" shouldn't be synbolized by a quantifier at all
"“Any" shoul d be synbolized by a free variable and a sentence
cont ai ni ng "any" shoul d be synbolized by an open sentence." "Any
dog can fly" should be synbolized by the open sentence "(x is a
dog - x can fly),"” which is to be understood in the sane way we
understand the trigononetric law "tan? 6 + 1 = sec? 0": any way
you choose to replace 6 with a nunerical expression, you'll get a
true sentence. But it's sinpler and nore straightforward to
think of the trigononetric law as tacitly universally quantifier
"For any angle 6, tan> 6 + 1 = sec? 0," and, |ikew se, to synbol -
i ze sentences containing "any" by the universal closure* of
Russel | 's schema

Russell's nmethod doesn't work for "just any." "Not just
anyone can join the Branded Peasant Club" is "-(0Ox)Jx," rather
than "(0Ox)-Jx." "If just anyone can join the Branded Peasant
Club, I wouldn't want to be a nenber” is ((Ox)Jx - =-W)," rather
than "(Ox)(Jx - -W)."

A way to translate "any" that | find easier is to take
advant age of the fact that English speakers have, froma very
early age, an exquisitely well tuned ear for recognizing when two
Engl i sh sentences nean the sane thing. Thus to translate a

* A universal closure of a fornula is a sentence gotten by prefixing universal
quantifiers.
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sentence containing "any," try substituting "every" for "any,"
and see if the resulting sentence neans the sane thing; if so,
translate “any” as "[0O." If not, try substituting "at |east one";
when "any" neans the sane as "at |east one," it should be trans-
lated "O" Thus "Any dog can fly" neans the sane as "Every dog
can fly," soit's translated "(Ox)(Dx - Fx)." Simlarly, "If
Tarmn can fly, any dog can" nmeans the sane as "If Tarm n can
fly, every dog can,” translated "(Ft - (Ox)(Dx - Fx))." On the
ot her hand, "If any dog can fly, Tarm n can" doesn't nean "If
every dog can fly, Tarmn can"; it neans "If at |east one dog can
fly, Tarmin can," so it's translated "((Xk)(Dx O Fx) - Ft)."
"Any dog who chases any dog who chases any cat will be put into
the pound” is "Every dog who chases at | east one dog who chases
at | east one rabbit will be put into the pound,” "(0Ox)((Dx O

() ((Dy O () (Rz O Cz)) OCy)) - Px)."

Now, having put it off as |long as possible, we turn to the
semantics of the formal |anguage. An interpretation is a function

A,assigning a value to "0," to each individual constant, and each
predi cate, so that

A("0O"), also witten |4, is a nonenpty set.

A(c), also witten ¢4 is an elenent of |4, for each
i ndi vi dual constant c.

A(R), also witten R%, is a set of n-tuples from]| 4|,
for each n-place predicate R

[Here we identify an individual with its 1-tuple, so that <Socra-
tes> = Socrates; if Ris a 1-place predicate, R will be a subset
of [Oall]

The semantics for the full predicate cal culus proceeds in
basically the sane way as the semantics for the nonadic predicate
calculus, though it's a little nore conplicated because of the
presence of the extra variables. Instead of talking about a
single individual satisfying a fornula, we talk about satis-
faction by a function assigning an individual to each of the
vari abl es. For exanple, if "S" represents the son-of relation,
then a function which assign Isaac to "x" and Abrahamto "y" wll
satisfy "Sxy."
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A variable assignnent for 4 is a function which assigns an
el enent of | 4| to each of the variables. If o is a variable as-
si gnment, define Deng 4(t), for each individual synbol t by

Den, 4(t) = A(t) if t is an individual constant
o(t) if t is a variable

If o is an atomc fornmula of the formRt;...t, and
c is a variable assignnent for an interpretation
A, we say that o satisfies ¢ under 2 iff the n-
tuple <Deng a(t1),...,Deng 4(tn)> is an el enent of

A(R) .

For exanple, if o("x") is lIsaac, o("y") is Abraham and o("z") is
Sara and if 4("S") is the son-of relation while 4("a") is Abra-
ham s father Abram we see that o satisfies "Sxy," "Sxz," and
"Sya," whereas it doesn't satisfy "Syx," "Sax," or "Saa."

o satisfies a disjunction under 4 iff o satisfies one
or both disjuncts under 4.

o satisfies a conjunction under 4 iff o satisfies both
conjuncts under A.

c satisfies a conditional under 42 iff either o satis-
fies the consequent under 4 or o fails to satisfy the
ant ecedent under 4.

o satisfies a biconditional under 4 iff either o satis-
fies both conmponents under 4 or o satisfies neither
conponent under 4.

o satisfies a negation under 4 iff o does not satisfy
t he negatum under A.

Bef ore we can give the condition of satisfaction for an
initially quantified sentence, we need a definition: Were v is a
variable and o is a variable assignnment for an interpretation 14,
a v-variant of o is a variable assignnent which assigns the sane
val ue o assigns to every variable other than v. Thus, if pis a
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v-variant of o, then the only place ¢ and p m ght disagree is in
what they assign to v; we express this by witing p =, o

o satisfies (Ov)e under 2 iff every v-variant of o
satisfies ¢ under .

o satisfies (v)o under 4 iff at |east one v-variant of
o satisfies ¢ under A.

Exanpl e. Consi der the |anguage whose predicates are a 1-pl ace
predicate "R' and a 2-place predicate "E," and whose only indi-
vi dual constant is "j." Define an interpretation 4 for the

| anguage by sti pul ati ng:

| 4] = {U S. presidents, Washi ngton through Cinton}

A("E") = {<x,y> x and y are presidents and x first
took office earlier than y}

A("R') = {Republican presidents}

A("j') = Andrew Jackson

Let o be the follow ng variable assignnent for

o("x") = CGeorge Washi ngton
o("y") = Abraham Lincoln
o("z") = Richard Ni xon

c(every other variable) = Harry Truman
Thus o satisfies "Exy" because Washi ngton took office before
Lincoln." o doesn't satisfy "Ezw' because N xon was |ater than
Truman. o satisfies the conditional "(Ezw - Rw)" because it
fails to satisfy the antecedent. o doesn't satisfy "(Eyz - R),"
since it satisfies the antecedent — Lincoln was earlier than
Ni xon — but it doesn't satisfy the consequent — Jackson wasn't a
Republ i can.

Now consi der the variable assignment p with

p("x" Geor ge Washi ngt on

p("y") Ronal d Reagan

p("z") = Richard N xon

p(every other variable) = Harry Truman
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Thus o and p agree on the value they assign to every variabl e
other than "y," so that pis a "y"-variant of o. p satisfies "(Ry
O Ezy)," since Reagan was a Republican who took office after

Ni xon. Since pis a "y"-variant of o that satisfies "(Ry O Ezy),"
o satisfies "(y)(Ry O Ezy)." o doesn't satisfy "(Ry O Ezy),"
since N xon took office later than Lincoln. Hence o satisfies

"((y) (Ry O Ezy) O -~(Ry O Ezy))."

Let t be an "x"-variant of o. Then t("y") = o("y") = Lin-
coln. W don't know who t("x") is, but, whoever t("x") is, we

know that 7 won't satisfy "(Rx O Exy)," because there were no
Republ i can presidents earlier than Lincoln. Since every "x"-

variant of o satisfies "-(Rx O Exy," o satisfies "(0Ox)-(Rx O
Exy) . "

Let p be the variabl e assignment given by

u("x") = Bill dinton

u("y") = Abraham Li ncoln

u("z") Ri chard N xon

u(every other variable) = Harry Truman

Thus pis an "x"-variant of o. Let v be a "y"-variant of p. Even
wi t hout knowi ng who v("y") is, we can be confident that v satis-
fies "(Ry - Eyx)," since, if v("y") is any nmenber of |_| other
than Cinton, v will satisfy the consequent, whereas, if v("y")
happens to be Cinton, v will fail to satisfy the antecedent.
Since every "y"-variant of p satisfies "(Ry - Eyx)," u satisfies
"(Oy)(Ry - Eyx)." Since pis an "x"-variant of o which satisfies
"(Oy)(Ry - Eyx)," we see that o satisfies "([k)(Oy)(Ry - Eyx)."
I ndeed, every variabl e assignnent satisfies "(IX)(Oy)(Ry -
Eyx)." "(IX)(Oy)(Ry - Eyx)" is a true sentence and, as we shall
now see, a true sentence is satisfied by every variable

assi gnnment, whereas a fal se sentence is satisfied by nothing. X

Lenma on Irrelevant Variables. If o and p are
vari abl e assignnents for 4 which assign the sane
values to all the variables that occur free in o,
then o satisfies ¢ under 4 iff p does.
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The proof proceeds in the usual way. W let X be the set of
formul as ¢ such that, whenever o and p are variabl e assignnents
that agree on the values they assign the variables that occur
free in ¢, o satisfies ¢ iff p satisfies ¢. Then we show that X
contains the atomc fornmulas and that it's closed under disjunc-
tion, conjunction, negation, formng conditionals, form ng

bi condi tional s, universal quantification, and existential quanti -
fication. The proof is so simlar to the proof that the Law of

Bi val ence hol ds for the nonadic predicate calculus that there's
no point in going through it again here. X

Definition. A sentence is true under 4 iff it is
satisfied under 4 by every variabl e assi gnnment
for 4. A sentence is false under 2 iff it is
satisfied by no variabl e assignnment for 4.

The Lemma on Irrel evant Variables has the follow ng i nmedi ate
consequences:

Principle of Bivalence. Under a given interpreta-
tion, every sentence is either true or false.

Corol lary. For any sentence ¢, interpretation 1,
and vari abl e assignnent o for 4, ¢ is true under
iff o is satisfied by o under 4.

Corollary. A universal sentence (Ov)e is true
under 4 iff every variable assignnment for 4
satisfies ¢ under 4. An existential sentence ([V)o
is true under 4 iff sone variabl e assignnent sat-
isfies ¢ under A

If o is aformula with only the variable v free, we can
continue to tal k about an individual satisfying ¢, just as we did
when we were working on the nonadi c predicate cal culus. Were
is an interpretation and a a nenber of |4, we will say that a
satisfies ¢ under 4 to nean that every variable assignnent o with
o(v) = a satisfies ¢ under 4. According to the Lemma on Irrele-
vant Variables, this will hold whenever there is even one vari -
abl e assignment with o(v) = a that satisfies o.
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The proofs of the followng results are virtually unchanged
fromthe nonadi c predicate cal cul us:

Substitution Principle. If 4(c) = o(v), then o
satisfies ¢/ under Aiff o satisfies ¢ under A

Locality Principle. Let 4 and 8 be two interpre-

tations which have the sane universe of discourse
and whi ch assign the sane values to all the indi-
vi dual constants and predicates that occur within

the formula ¢. Then, for any variabl e assi gnnent
o, o satisfies o under 4 iff o satisfies ¢ under
3.

Wil e nost of our results fromthe nonadi c predicate cal cu-
lus carry over to the full predicate cal culus, not everything is
t he sane. Thus, we saw that every consistent MPC sentence is true
in an interpretation with a finite universe. The sane is not true
for the full predicate cal culus. Thus consider the follow ng
sent ence:

((Ox) (Oy) Lxy O ((Ox) (Qy) (Oz) ((Lxy O Lyz) - Lxz) O
(Ox) =Lxx))

The sentence is certainly consistent, as we can see from consi d-
ering an interpretation 42 with |4 = {natural nunbers} and
A("L") = the less-than relation on the natural nunbers. But the
sentence isn't true under any interpretation with a finite
universe. To see this, take an interpretation @ under which the
sentence is true. Take ap O | 8. Because "(0Ox)(Oy)Lxy" is true
under ® there must exist an elenment a; of |3 such that <ap, a;>
O #("L"); because "(0Ox)-Lxx" is true under @, aj; nust be
different fromap. Because "(0Ox)(Oy)Lxy" is true under @, there
nmust exist an elenment a, of |8 wth <aj,a> 0O @8("L"). Because
the sentence "(0Ox)(Oy)(Oz)((Lxy OLyz) - Lxz)" is truein @
<ap, a> must be in & "L"). It follows fromthe fact that
"(Ox)-Lxx" is true in @ that a, is distinct fromboth ap and a;.
Because "(0Ox)(Oy)Lxy" is true in @8 there nust exist an el enent
as of | @ such that <a az> 0O ®("L"). Because "(0Ox)(0Oy)(0Oz) ((Lxy
O Lyz) - Lxz)" is true in B, <ai az> and <ap, az> nmust both be in
B("L"). Since "(0Ox)-Lxx" is true in , az nust be distinct from
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ap, froma;, and froma,. And so on. W find a; with <az a;, > 0O
B("L") and we show that a4 is different fromap, ai, a,, and as.

Then we find as with <ag,as> 0 8("L") and we show that as is
different fromap, ai, a,, as, and as. The process conti nues
forever, so we conclude that |3 nmnust be infinite.

For the nonadic predicate cal culus, we found that there was
a nechani cal procedure for testing whether a given sentence is
valid, though the nmethod, we nust admt, was too cumnbersone to be
of much practical use. One of the fundanental results in the
theory of conputability is that there is no such procedure for
the full predicate cal cul us:

Church's Theorem There can be no algorithm for
testing whether a given sentence is valid in the
predi cat e cal cul us.

What an amazing result! The theoremtells us, not nerely
that, as a matter of fact, right now today no one has witten
down an algorithmfor testing validity in the predicate cal cul us.

It tells us that there will never be such an algorithm no natter
how cl ever people beconme in the future. Church's Theoremis a
fundamental limtation, like the facts that no one wll ever
travel faster than |light and no one will ever carry out neasure-

ments nore precise than permtted by the Hei senberg Uncertainty
Principle. Unfortunately, we won't be able to discuss Church's
Theorem nore fully here.

A deci sion procedure for validity in the predicate cal cul us
woul d be a nechani cal procedure by which, for a given sentence,
we can test, one way or another, whether the sentence is valid.
Church’s Theoremtells us that there is no such procedure. There
is, however, a proof procedure, a nethod by which any sentence
that is valid can be shown to be valid. Nanely, we derive the
sentence fromthe enpty set, using the full-predicate-cal cul us
version of the rules of derivation we |earned for the MPC. If a
sentence is valid, we can derive it formthe enpty set, and, if
we can derive a sentence fromthe enpty set, it is valid. So if
a sentence is valid, we have a way of showing it's valid. The
trouble is that an invalid sentence is invalid. If a sentence is
invalid, we won't be able to prove it. But the fact that we
haven't been able to produce a proof for a given sentence doesn't
show t hat the sentence is unprovable. Maybe there is a proof, but
we haven't been cl ever enough or patient enough to produce it.
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The fact that we have worked for seventy-two hours — or seventy-
two years — at trying to prove a sentence wthout success doesn't
prove that the sentence isn't provable, so it doesn't prove that
the sentence isn't valid.

For validity in the full predicate cal culus, we have no
deci si on procedure, but we have a proof procedure. W'l take
that up in the next chapter. In the neantinme, we'll learn a
little nore about the semantics of the predicate cal cul us.

W’ ve already stipulated that two sentences are logically
equivalent iff they are true under precisely the sane interpreta-
tions. Let us now generalize this notion to fornulas that contain
free vari abl es.

Definition. Two fornmulas are materially equival ent
with respect to an interpretation 4 just in case
they are satisfied in 4 by precisely the sane

vari abl e assignnents for 4

Proposition. Suppose that ¢; and ¢, are materially
equi valent with respect to 4. Let y; and y, be two
formul as that are ali ke except that y; contains ¢
as a subformula at sone places where vy, contains
¢2. Then y; and y, are materially equivalent wth
respect to A.

Proof: Suppose not. Let y; be a sinplest fornmula such that there
exists a formula y, which is just |ike y; except that y; contains
@1 at some places where y, contains ¢, such that y; and y, are not
materially equivalent wwth respect to 4. y; must not be equal to
¢1, since if it were, y, would be identical to ¢, and, by hypot he-
sis, o1 and ¢, are materially equivalent with respect to 4. So y;
must contain ¢; as a proper part. That neans that y; can’'t be
atomc, since atomc fornulas don’'t have any fornulas as proper
parts. There are seven other possibilities:

y1 IS a conjunction, say (y1 O 01). Then y; has the form (y: O 02),
where either yo = y1 or else they differ in that y; contains ¢; at
sonme or nore places where y, contains ¢,. Simlarly for 0,. Be-
cause y; is a sinmplest forrmula for which the theoremwe’ re trying
to prove fails, we know that y is materially equivalent to y and
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that 6, is materially equivalent to 6,. For any variabl e assign-
ment o, we have:

c satisfies (y O 0;) with respect to 4

iff o satisfies both y3 and 61 with respect to 4
iff o satisfies both y, and 6, with respect to 4
iff o satisfies (g O6,) Wth respect to A

The other cases are simlar.X
Definition. Two formulas are |ogically equival ent
iff they are materially equivalent wwth respect to
every interpretation.

Corol l ary. Suppose that ¢; and ¢, are logically
equi val ent,and let y; and y, be two fornul as that
are alike except that y; contains ¢; as a subform
ula at sone places where y, contains ¢,. Then y;
and y, are logically equival ent.

Definition. Aformula is said to be in prenex form
if its quantifiers (if it has any) all occur at
the very beginning of the fornula, followed by a
formula that is quantifier-free.

Theorem For any fornula, there is a logically
equi valent fornmula in prenex form

Proof: For a given formula, performthe foll ow ng operati ons.
First, replace all subforrmulas of the form(y o % by ((v - % O
(x » v)). This wll still give you a fornmula logically

equi valent to the one you started with. Next, change the bound
vari abl es so that no variable occurs both free and bound wi thin
the fornmula, and so that no variable occurs within a quantifier
nore than once. A change of bound variables wll |eave you with a
formul a equivalent to the one you started with. Finally,
repeatedly apply the followng lenmma to pull all the quantifiers
to the front, working fromthe outside in

Lenma. Suppose that the variable v doesn’'t appear
in the formula y. For any formula ¢ we have:

((Ov)e Ovy) is logically equivalent to (Ov) (e O v).
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(v O(Ov)e) is logically equivalent to (Ov)(y O ¢).
((v)e Ovy) is logically equivalent to (V) (o O vy).
(v O(Ov)e) is logically equivalent to (v) (v O o).
((Ov)e Ovy) is logically equivalent to (Ov) (e O v).
(v O(Ov)e) is logically equivalent to (Ov)(y O 9).
((v)e Ovy) is logically equivalent to (V) (o O vy).
(v O(Ov)e) is logically equivalent to (Ov) (v O 9).
((Ov)e - vy) is logically equivalent to () (¢ -
V) -

(v - (Ov)e) is logically equivalent to (Ov)(y -
).

((v) o - vy) is logically equivalent to (Ov)(o -
V) -

(v » (v)g) is logically equivalent to (V) (y -

) .
-(0Ov)e is logically equivalent to (V) -o.
-(v)e is logically equivalent to (0Ov)-e.

Exanple: Let’s find a prenex equivalent to the fornula
“((Ox)(y) Fxy o (X)Fzx).” First, we get rid of the “&":

(((Ox)(Oy) Fxy > (X)) Fzx) 0O ((X) Fzx -
(Ox) (Oy) Fxy))

Next, we change bound vari abl es:

(((Ox) (y) Fxy - (On) Fzw) O ((v) Fzv -
(Ou) (@) Fut))

Now we start noving the quantifiers forward:

() (() Fxy -» (O Fzw) O ((v) Fzv -
(Ou) (OO) Fut))

((0x) (Qy) (Fxy - (OW) Fzw) O ((v) Fzv ~
(Ou) (@) Fut))

((X) (Qy) (On) (Fxy - Fzw) O ((v) Fzv -
(Ou) (@) Fut))
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((Xx) (Oy) (Oy) (Fxy - Fzw) O (Ov)(Fzv -
(Ou) (O) Fut))

((0x) (Oy) (Bn) (Fxy - Fzw) O (0Ov) (Hu) (Fzv
(0)Fut))

Fut)) ((Dx) (Qy) (Ow) (Fxy - Fzw) O (Ov) (Ou) (&) (Fzv -
u

Fut)) (0x) ((Oy) (On) (Fxy - Fzw) O (Ov) (du) (&) (Fzv -
u

Fut)) (X)(OQy) ((Ow) (Fxy - Fzw) O (Ov)(Ou) () (Fzv -
u
Fut)) (X)(Oy) (OM ((Fxy - Fzw) O (Ov)(Ou) () (Fzv -
u

Fut)) (0x) (Qy) (Ba) (Ov) ((Fxy - Fzw) 0O (Ou) (&) (Fzv
u

Fut)) (0x) (Qy) (O (Ov) (Ou) ((Fxy - Fzw) O () (Fzv -
u

Fut)) (0x) (Qy) (Ba) (Ov) (Ou) () ((Fxy - Fzw) O (Fzv -
u

There were |ots of other possibilities for the order in which
we chose to bring the quantifiers forward, so there were lots
of other answers we m ght have gotten here (all logically
equi val ent, of course.)X



