
Predicate Calculus

The logic we have learned so far goes only a little bit
beyond Aristotle's logic. The great leap forward was to extend
the logic to encompass relations as well as properties.

Consider the sentence "Isaac is a son of Abraham." We can
think of the sentence as attributing a property to Isaac, so
that, if we use "i" to denote Isaac and "A" to designate the sons
of Abraham, we can symbolize the sentence "Ai." We may also think
of the sentence as attributing a property to Abraham, so that,
using "a" to denote Abraham and "I" to designate Isaac's parents,
we have "Ia." But we may also think of the sentence as about both
Abraham and Isaac, saying of them that they stand in a certain
relation. For this we need to go beyond the monadic predicate
calculus, where we could only talk about properties, not about
relations.

Let "S" denote the son-of relation. Then we can symbolize
"Isaac is a son of Abraham" as "Sia." Using "m" for "Ishmael,"
we'll write "Sma" for "Ishmael is a son of Abraham." "Isaac is a
son of Sara" will be "Sis." "Ishmael is a son of Abraham but not
of Sara" will be "(Sma ∧ ¬Sms)."

To say "Abraham has a son" will be "(∃ x)Sxa." To say "Abra-
ham is a son" is "(∃ x)Sax." To say "Abraham and Sara both have
sons" will be "((∃ x)Sxa ∧ (∃ x)Sxs)," whereas to say "Abraham and
Sara have a son" will be "(∃ x)(Sxa ∧ Sxs)." "Every son of Sara is
a son of Abraham, but not every son of Abraham is a son of Sara"
will be "((∀ x)(Sxs → Sxa) ∧ ¬(∀ x)(Sxa → Sxs))."

To say "Isaac is a son of Abraham," we write "Sia." If we
say "Everyone is a son of Abraham," we are saying that everyone
has the property that the sentence "Isaac is a son of Abraham"
attributes to Isaac. To express this, we first replace the
constant "i" by the variable "x" to get an open sentence which
expresses the property of being a son of Abraham. Then, to say
that everyone has this property, we prefix the universal quanti-
fier "(∀ x)." The (closed) sentence "(∀ x)Sxa" says that everyone
is a son of Abraham.

We write "(∃ x)Sxa" to say that Abraham has a son; the
sentence attributes to Abraham the property of having a son. How
would we attribute this property to everybody, saying that
everyone has a son? We want to form an open sentence and prefix a
universal quantifier, but we can't do this the way we did before,

Predicate Calculus, p. 2

by substituting the variable "x" for "a" and prefixing "(∀ x)."
This would give "(∀ x)(∃ x)Sxx." But there is nothing about this
sentence to indicate that it means "Everyone has a son," rather
than "Everyone is a son" or "Someone is his own son." To properly
represent "Everyone has a son," we require a second variable. To
represent the property of having a son, substitute a new variable
for "a" in "(∃ x)Sxa," getting the open sentence "(∃ x)Sxy." To say
that everyone has a son, prefix the universal quantifier "(∀ y),"
getting "(∀ y)(∃ x)Sxy."

To say "Everyone is a son," take the sentence "(∃ x)Sax,"
which says that Abraham is a son, and substitute "y" for "a,"
getting an open sentence "(∃ x)Syx," which represents the property
of being a son. Then prefix the universal quantifier "(∀ y)" to
get "(∀ y)(∃ x)Syx."

"Someone is his own son" would naturally be said "(∃ x)Sxx."
As we shall see below, "(∀ x)(∃ x)Sxx" also means that someone is
his own son, though it's a silly way to say it, since the initial
"(∀ x)" is entirely superfluous.

We'll symbolize "John loves Mary" as "Ljm," and "John is
loved by Mary" as "Lmj." "John loves someone" will be "(∃ x)Ljx,"
and "Everyone loves someone" will be "(∀ y)(∃ x)Lyx"; "There is
somebody who loves someone" is "(∃ y)(∃ x)Lyx." "John is loved by
someone" will be "(∃ x)Lxj," while "Everyone is loved by someone"
is "(∀ y)(∃ x)Lxy"; "Somebody is loved by someone" is
"(∃ y)(∃ x)Lxy," which is logically equivalent to the formula that
symbolizes "Somebody loves someone." "John loves everyone" is
"(∀ x)Ljx." "There is someone who loves everyone" is
"(∃ y)(∀ x)Lyx," while "Everyone loves everyone" is "(∀ y)(∀ x)Lyx."
"Mary is loved by everyone" is "(∀ x)Lxm." "There is someone who
is loved by everyone" is "(∃ y)(∀ x)Lxy." "Everyone is loved by
everyone" is "(∀ y)(∀ x)Lxy," which is logically equivalent to the
sentence that symbolizes "Everyone loves everyone."

"John loves someone who loves Mary" is "(∃ x)(Ljx ∧ Lxm)."
"Someone loves someone who loves Mary" is "(∃ y)(∃ x)(Lyx ∧ Lxm)."
"Someone loves someone who loves someone" is "(∃ z)(∃ y)(∃ x)(Lyx ∧

Predicate Calculus, p. 3

Lxz)." "Everyone loves someone who loves Mary" is "(∀ y)(∃ x)(Lyx
∧ Lxm)."

"John loves everyone who loves everyone" can be paraphrased
"For any y, if y loves everyone, John loves y." "y loves every-
one" is "(∀ x)Lyx," and "John loves y" is "Ljy," so that "John
loves everyone who loves everyone" is "(∀ y)((∀ x)Lyx → Ljy)."
"Everyone loves everyone who loves everyone" is
"(∀ z)(∀ y)((∀ x)Lyx → Lzy)," while "Someone loves everyone who
loves everyone" is "(∃ z)(∀ y)((∀ x)Lyx → Lzy)."

"If John loves anyone, he loves Mary" is "((∃ x)Ljx → Ljm)."
"Everyone who loves anyone loves Mary" is "(∀ y)((∃ x)Lyx → Lym)."
"John loves himself" is "Ljj." "If John loves anyone, he loves
himself" is "((∃ x)Ljx → Ljj)." "Everyone who loves anyone loves
himself" is "(∀ y)((∃ x)Lyx → Lyy)."

Variables don't name anything. They indicate places where a
name has been taken from a sentence. We have different variables
because we have different names, to indicate the places from
which the different names have been taken. The variables are
interchangeable. "John loves someone" can be written "(∃ x)Ljx" or
"(∃ y)Ljy." "Everyone loves someone" can be written "(∀ y)(∃ x)Lyx"
or "(∀ x)(∃ y)Lxy" or "∀ z)(∃ x)Lzx" or (∀ z)(∃ y)Lzy."

We now give an official description of the formal languages
we shall be using. In addition to the familiar "∨ ," "∧ ," "→,"
"↔," "¬," "∀ ," "∃ ," "(," and ")," a language for the predicate
calculus contains symbols of the following sorts:

Individual constants, usually lowercase letter
from the beginning of the alphabet, sometimes with
numerical subscripts, which serve the role of
proper names in English; an individual constant
names an individual.

Variables, usually lowercase letters from the end
of the alphabet, sometimes with numerical sub-
scripts, which serve more-or-less the role of
personal pronouns. The individual constants and
the variables are referred to as the individual
symbols.

Predicate Calculus, p. 4

One-place predicates, usually uppercase letters,
sometimes with numerical subscripts, which play
the roles played by English intransitive verbs,
adjectives, and common nouns; 1-place predicates
represent properties and actions.

Two-place predicates, usually uppercase letters,
sometimes with numerical subscripts, which serve
the functions served by transitive verbs and by
phrases like "is taller than" and "is a daughter
of."

Three-place predicates, usually uppercase letters,
sometimes with numerical subscripts, which behave
like "______ is between ______ and ______" and
"______ gave ______ to ______."

And so on. For each positive number n, there is a
category of n-place predicates.

The language has to have infinitely many variables, but, other
than that, any of these categories can be empty, though the
language has to have at least one predicate. We assume that none
of these categories of expressions overlap.

An atomic formula consists of an n-place predicate followed
by n individual symbols. For example, "Lxy," "Lyx," "Ljx," and
"Ljm."

The formulas comprise the smallest class of expressions
which

contains the atomic formulas;
contains (φ ∧ ψ), (φ ∨ ψ), (φ → ψ), and (φ ↔ ψ),
whenever it contains φ and ψ; and
contains ¬φ, (∀ v)φ, and (∃ v)φ, for each variable v,
whenever it contains φ.

Unique Readability Lemma. A formula is built up
out of atomic formulas in a unique way.

Predicate Calculus, p. 5

An occurrence of a variable v in a formula is bound iff it
occurs within some subformula that begins with either (∀ v) or
(∃ v). If not bound, free. A formula with no free variables is
called a sentence. For example, in "((∀ x)Fxy ∨ (∃ y)Fxy)," the
first two occurrences of "x" are bound and the last one free,
while the first occurrence of "y" is free and the other two are
bound. Thus the quantifier "(∀ x)" at the beginning of "(∀ x)Fxy"
binds the occurrence of "x" in "Fxy," but leaves the occurrence
of "y" free.

Where φ is a formula, v a variable, and t an individual
symbol, we write φv/t for the result of replacing each free
occurrence of v in φ by t.

The terminology from the monadic predicate calculus ─ such
terms as "disjunction," "molecular formula," and "universal
formula" ─ is carried over directly.

The ideas behind the semantics for the predicate calculus
are just the same as the ideas behind the semantics for the
monadic predicate calculus, but, because of the presence of the
extra variables, the details are quite a bit more complicated. So
I want to put it off as long as possible. Hence, before we talk
about semantics, let's talk a little bit about translations.

There are two principal principles governing translations.
The first is that universal statements in English are generally
rendered by a predicate calculus sentence consisting of a univer-
sal quantifier followed by a conditional. Thus "All squirrels are
mammals" is translated "(∀ x)(Sx → Mx)." For "(∀ x)(Sx → Mx)" to
be true, everything must satisfy "(Sx → Mx)," which is to say
that nothing satisfies "Sx" without also satisfying "Mx"; which
means that nothing is a squirrel which is not a mammal; which
means that "All squirrels are mammals" is true.

"Everyone who loves Jill loves Clarissa" is "(∀ x)(Lxj →
Lxc).: "Every son of Sara is a son of Abraham" is "(∀ x)(Sxs →
Sxa)." "Everyone who sings and plays the ukelele has friends" is
"(∀ x)((Sx ∧ Ux) → (∃ y)Fyx)." In each case, we see the pattern,
universal quantifier followed by a conditional. "All As are Bs)"
is "(∀ x)(Ax → Bx)."

Predicate Calculus, p. 6

Rarely we see a universal quantifier followed by something
other than a conditional. "Everyone is either a man, a woman, or
a child" is translated by a universal quantifier followed by a
disjunction, "(∀ x)((Mx ∨ Wx) ∨ Cx)." "Everyone drank, smoked,
and had fun" is a universal quantifier followed by a conjunction,
"(∀ x)((Dx ∧ Sx) ∧ Fx)." But such cases are exceptional. Whenever
your translation is a universal quantifier followed by something
other than a conditional, look again, more carefully, for such a
translation is seldom right.

The second principal principle is that English existential
sentences ─ that is, English sentences that make existence
claims ─ are symbolized by an existential quantifier followed by
a conjunction. "(∃ x)(Sx ∧ Fx)" translates "Some squirrels can
fly," since it is true if and only if something satisfies "Sx"
and "Fx," that is, it is true if and only if there is something
that is both a squirrel and a thing that flies.

"Someone loves both Jill and Clarissa" is "(∃ x)(Lxj ∧ Lxc)."
"Some sons Of Sara are sons of Abraham" is "(∃ x)(Sxs ∧ Sxa)."
"Some people who play the ukelele have friends" is "(∃ x)(Ux ∧
(∃ y)Fyx)." In each case, we see a pattern: existential quantifier
followed by conjunction. "Some As are Bs" is "(∃ x)(Ax ∧ Bx)."

There are exceptions to this pattern. "There are some who
neither drank nor smoked" is "(∃ x)¬(Dx ∨ Sx)." But such excep-
tions are rare.

The only difference between the English sentence "Some
squirrels can fly" and "All squirrels can fly" is that the word
"some" has been replaced by "all." So we would naturally antici-
pate that the only difference between their translations is that
the existential quantifier "(∃ x)" is replaced by the universal
quantifier "(∀ x)." But this would be a mistake. There are two
differences between the sentences. The first is an existential
quantifier followed by a conjunction, "(∃ x)(Sx ∧ Fx)," whereas
the second is a universal quantifier followed by a conditional,
"(∀ x)(Sx → Fx)." Just replacing the existential by the universal
quantifier gives "(∀ x)(Sx ∧ Fx)," which isn't what we want; it
says that everything is a flying squirrel.

Predicate Calculus, p. 7

When I say "Everyone drank and smoked and had fun," I don't
mean that everyone in the whole world drank, smoked, and had fun,
I mean that everyone at the party did so. In this particular
context, "everyone" means "every person at the party," so, when
we translate the sentence, we need to understand "(∀ x)" in such
a way that (∀ x)φ is true if and only if everyone at the party
satisfies φ. When I utter the sentence "Everyone drank and smoked
and had fun," it's within a context in which it's clear that the
only individuals we are interested in are the people at the
party. The set of people at the party is said to be the universe
of discourse, and "(∀ x)" is understood in such a way that (∀ x)φ
is true if and only if every member of the universe of discourse
satisfies φ.

When we translate "Some people who play the ukelele have
friends" as "(∃ x)(Ux ∧ (∃ y)Fxy)," we are understanding "(∃ x)" in
such a way that (∃ x)φ is true if and only if some people satisfy
φ; that is, we are taking our universe of discourse to consist of
people. If we didn't want to limit our horizon in this way, we
could take our universe of discourse to include everything and
translate the sentence "(∃ x)(Px ∧ (Ux ∧ (∃ y)Fxy))."

"All" and "only" are related in the same way as "if" and
"only if." "All As are Bs" means "For any x, x is a B if x is an
A," "(∀ x)(Ax → Bx)." "Only As are Bs" means "For any x, x is a B
only if x is an A," "(∀ x)(Bx → Ax)." Thus "All Sola's pups can
fly" is "(∀ x)(Pxs → Fx)," whereas "Only Sola's pups can fly" is
"(∀ x)(Fx → Pxs)." "All and only Sola's pups can fly" can be
written as the conjunction "All Sola's pups can fly and only
Sola's pups can fly'" "((∀ x)(Pxs → Fx) ∧ (∀ x)(Fx → Pxs)"; or it
can be written more concisely as "(∀ x)(Pxs ↔ Fx)." "Of all the
dogs that live on Jefferson Street, only Sola's pups can fly" is
"For all x, if x is a dog that lives on Jefferson Street, then x
can fly only if x is one of Sola's pups," "(∀ x)((Dx ∧ Jx) → (Fx
→ Pxs))."

The quantifiers interact with the sentential calculus
connectives in just the ways you'd expect. "Not every squirrel
flies" is the negation of "Every squirrel flies," namely,
"¬(∀ x)(Sx → Fx)." "No squirrel flies," which is the negation of
"Some squirrel flies," is "¬(∃ x)(Sx ∧ Fx)." "Not every squirrel

Predicate Calculus, p. 8

flies, but some do" is a conjunction, "(¬(∀ x)(Sx → Fx) ∧ (∃ x)(Sx
∧ Fx))." "Melissa won't dance unless everyone does" is a condi-
tional "(¬(∀ x)Dx ¬Dm)." "Melissa will come to the party if all
the boys that hang out at Spike's Place come, but, otherwise,
she'll stay home and watch TV" is "(((∀ x)((Bx ∧ Sx) → Px) → Pm)
∧ (¬(∀ x)((Bx ∧ Sx) → Px) → (Hm ∧ Wm)))."

The trick to successful translation is to work in stages.
For example, using "A," "H," and "C," respectively, to translate
"admires," "hires," and "is a chauffeur," let's translate "Every-
one who hires a chauffeur is admired by everyone who doesn't hire
a chauffeur." The sentence is universal, its translation will
consist of a universal quantifier followed by a conditional,
"(∀ x)(x hires a chauffeur → x is admired by everyone who doesn't
hire a chauffeur)." "x hires a chauffeur" is existential "(∃ y)(y
is a chauffeur ∧ x hires y)," that is "(∃ y)(Cy ∧ Hxy)." When we
rewrite "x is admired by everyone who doesn't hire a chauffeur"
in the active voice as "everyone who doesn't hire a chauffeur
admires x," we see that it is a universal statement, "(∀ y)(y
doesn't hire a chauffeur → y admires x)." 'y doesn't hire a
chauffeur" is a negated existential claim, "¬(∃ z)(Cz ∧ Hyz)."
Putting the whole thing together, we get "(∀ x)((∃ y)(Cy ∧ Hxy) →
(∀ y)(¬(∃ z)(Cz ∧ Hzy) → Ayx))."

"Some admire all those who admire themselves, but some
admire only those who don't admire themselves" is a conjunction.
The first conjunct is existential, "(∃ x)x admires all those who
admire themselves." "x admires all those who admire themselves"
is universal, "for any y, if y admires herself, then x admires
y," "(∀ y)(Ayy → Axy)." The second conjunct is likewise existen-
tial, "(∃ x)x admires only those who don't admire themselves." "x
admires only those who don't admire themselves" is universal,
"for any y, x admires y only if y does not admire herself,"
"(∀ y)(Axy → ¬Ayy)" Putting the pieces together, ((∃ x)(∀ y)(Ayy →
Axy) ∧ (∀ y)(Axy → ¬Ayy))."

"Everyone who dated someone who dated either Harry or
someone who dated Harry should be tested" is "(∀ x)(x dated
someone who dated either Harry or someone who dated Harry →
Tx)." "x dated someone who dated either Harry or someone who
dated Harry" is (∃ y)(y dated either Harry or someone who dated

Predicate Calculus, p. 9

Harry ∧ x dated y)." 'y dated either Harry or someone who dated
Harry" is a disjunction "(Dyh ∨ y dated someone who dated
Harry)." "y dated someone who dated Harry" is "(∃ z)(Dzh ∧ Dyz)."
So the sentence is "(∀ x)((∃ y)((Dyh ∨ (∃ z)(Dzh ∧ Dyz)) ∧ Dxy) →
Tx)."

For the most part, translation, while it may be complicated,
is pretty straightforward. "Every," "all," and "each" are trans-
lated by universal quantifiers (generally followed by condition-
als), while "some," "one," "at least one," "there exists," and
"there are" are symbolized by existential quantifiers (generally
followed by conjunctions).

"Any" presents special problems. In a simple sentence, "any"
is universal; "Any dog can fly" is "(∀ x)(Dx → Fx)." When "any"
occurs in the consequent of a conditional, it's again translated
"all"; "If Tarmin can fly, any dog can fly" is "(Ft → (∀ x)(Dx →
Fx))." When "any" occurs in the antecedent of a conditional and
it's paired with a pronoun that appears in the consequent, it's
again translated "(∀ x)"; "If any dog can fly, she is exception-
ally agile" is "(∀ x)((Dx ∧ Fx) → Ax)." On the other hand, when
"any" occurs in the antecedent of a conditional and it doesn't
bind a quantifier that appears in the consequent, it's most
natural to translate it as existential. "If any dog can fly,
Tarmin can" is "((∃ x)(Dx ∧ Fx) → Ft)." Contrast "If any dog can
fly, Tarmin can" with "If every dog can fly, Tarmin can," trans-
lated "((∀ x)(Dx → Fx) → Tx)." You'd say the former if you be-
lieved that Tarmin is such a clever and agile dog that she'd
learn to fly if any dog would; the latter is true just because
Tarmin is a dog.

Sometimes, in complicated sentences, you can get "any"
translated both as existential and as universal. "Any dog who
chases any dog who chases any rabbit will be put in the pound" is
"(∀ x)((Dx ∧ (∃ y)((Dy ∧ (∃ z)(Rz ∧ Cyz)) ∧ C)) → Px)." Contrast it
with the sentence "Some dog who chases some dog who chases some
rabbit will be put in the pound," which is (∃ x)((Dx ∧ (∃ y)((Dy ∧
(∃ z)(Rz ∧ Cyz) ∧ Cxy) ∧ Px)," and with "Every dog who chases
every dog that chases every rabbit will be put in the pound,"
which is "(∀ x)((Dx ∧ (∀ y)((Dy ∧ (∀ z)(Rz → Cyz)) → Cxy)) →
Px)."

Predicate Calculus, p. 10

Bertrand Russell's work suggests an admirably simple rule
for translating "any": "Any" should always be translated by an
initial universal quantifier; if there are several "any"s they
should be translated by a block of initial universal quantifiers.
Thus "If Tarmin can fly, any dog can" would be "(∀ x)(Ft → (Dx →
Fx))," which is, as we shall see below, logically equivalent to
"(Ft → (∀ x)(Dx → Fx))." "If any dog can fly, Tarmin can" should
be "(∀ x)((Dx ∧ Fx) → Ft)," which is logically equivalent to
"((∃ x)(Dx ∧ Fx) → Ft)." "Any dog who chases any dog who chases
any rabbit will be put in the pound" is "(∀ x)(∀ y)(∀ z)(((Dx ∧ (Dy
∧ (Rz ∧ Cyz))) ∧ Cxy) → Px)," which is logically equivalent to
the symbolization we got before.

The way Russell thought about "any" isn't quite the way I've
been describing. Russell thought that the word "any" was a
schematic term, which could be filled in any way you liked. Thus
the word "any" shouldn't be symbolized by a quantifier at all.
"Any" should be symbolized by a free variable and a sentence
containing "any" should be symbolized by an open sentence." "Any
dog can fly" should be symbolized by the open sentence "(x is a
dog → x can fly)," which is to be understood in the same way we
understand the trigonometric law "tan2 θ + 1 = sec2 θ": any way
you choose to replace θ with a numerical expression, you'll get a
true sentence. But it's simpler and more straightforward to
think of the trigonometric law as tacitly universally quantifier,
"For any angle θ, tan2 θ + 1 = sec2 θ," and, likewise, to symbol-
ize sentences containing "any" by the universal closure* of
Russell's schema.

Russell's method doesn't work for "just any." "Not just
anyone can join the Branded Peasant Club" is "¬(∀ x)Jx," rather
than "(∀ x)¬Jx." "If just anyone can join the Branded Peasant
Club, I wouldn't want to be a member" is ((∀ x)Jx → ¬Wi)," rather
than "(∀ x)(Jx → ¬Wi)."

A way to translate "any" that I find easier is to take
advantage of the fact that English speakers have, from a very
early age, an exquisitely well tuned ear for recognizing when two
English sentences mean the same thing. Thus to translate a

* A universal closure of a formula is a sentence gotten by prefixing universal
quantifiers.

Predicate Calculus, p. 11

sentence containing "any," try substituting "every" for "any,"
and see if the resulting sentence means the same thing; if so,
translate “any” as "∀ ." If not, try substituting "at least one";
when "any" means the same as "at least one," it should be trans-
lated "∃ ." Thus "Any dog can fly" means the same as "Every dog
can fly," so it's translated "(∀ x)(Dx → Fx)." Similarly, "If
Tarmin can fly, any dog can" means the same as "If Tarmin can
fly, every dog can," translated "(Ft → (∀ x)(Dx → Fx))." On the
other hand, "If any dog can fly, Tarmin can" doesn't mean "If
every dog can fly, Tarmin can"; it means "If at least one dog can
fly, Tarmin can," so it's translated "((∃ x)(Dx ∧ Fx) → Ft)."
"Any dog who chases any dog who chases any cat will be put into
the pound" is "Every dog who chases at least one dog who chases
at least one rabbit will be put into the pound," "(∀ x)((Dx ∧
(∃ y)((Dy ∧ (∃ z)(Rz ∧ Cyz)) ∧ Cxy)) → Px)."

Now, having put it off as long as possible, we turn to the
semantics of the formal language. An interpretation is a function
A, assigning a value to "∀ ," to each individual constant, and each
predicate, so that

A("∀ "), also written |A|, is a nonempty set.
A(c), also written cA, is an element of |A|, for each

individual constant c.
A(R), also written RA, is a set of n-tuples from |A|,

for each n-place predicate R.

[Here we identify an individual with its 1-tuple, so that <Socra-
tes> = Socrates; if R is a 1-place predicate, RA will be a subset
of  A .]

The semantics for the full predicate calculus proceeds in
basically the same way as the semantics for the monadic predicate
calculus, though it's a little more complicated because of the
presence of the extra variables. Instead of talking about a
single individual satisfying a formula, we talk about satis-
faction by a function assigning an individual to each of the
variables. For example, if "S" represents the son-of relation,
then a function which assign Isaac to "x" and Abraham to "y" will
satisfy "Sxy."

Predicate Calculus, p. 12

A variable assignment for A is a function which assigns an
element of |A′| to each of the variables. If σ is a variable as-
signment, define Denσ,A(t), for each individual symbol t by

Denσ,A(t) = A(t) if t is an individual constant
= σ(t) if t is a variable

If φ is an atomic formula of the form Rt1...tn and
σ is a variable assignment for an interpretation
A, we say that σ satisfies φ under A iff the n-
tuple <Denσ,A(t1),...,Denσ,A(tn)> is an element of
A(R).

For example, if σ("x") is Isaac, σ("y") is Abraham, and σ("z") is
Sara and if A("S") is the son-of relation while A("a") is Abra-
ham's father Abram, we see that σ satisfies "Sxy," "Sxz," and
"Sya," whereas it doesn't satisfy "Syx," "Sax," or "Saa."

σ satisfies a disjunction under A iff σ satisfies one
or both disjuncts under A.

σ satisfies a conjunction under A iff σ satisfies both
conjuncts under A.

σ satisfies a conditional under A iff either σ satis-
fies the consequent under A or σ fails to satisfy the
antecedent under A.

σ satisfies a biconditional under A iff either σ satis-
fies both components under A or σ satisfies neither
component under A.

σ satisfies a negation under A iff σ does not satisfy
the negatum under A.

Before we can give the condition of satisfaction for an
initially quantified sentence, we need a definition: Where v is a
variable and σ is a variable assignment for an interpretation A,
a v-variant of σ is a variable assignment which assigns the same
value σ assigns to every variable other than v. Thus, if ρ is a

Predicate Calculus, p. 13

v-variant of σ, then the only place σ and ρ might disagree is in
what they assign to v; we express this by writing ρ ≈v σ.

σ satisfies (∀ v)φ under A iff every v-variant of σ
satisfies φ under A.

σ satisfies (∃ v)φ under A iff at least one v-variant of
σ satisfies φ under A.

Example. Consider the language whose predicates are a 1-place
predicate "R" and a 2-place predicate "E," and whose only indi-
vidual constant is "j." Define an interpretation A for the
language by stipulating:

|A| = {U.S. presidents, Washington through Clinton}
A("E") = {<x,y>: x and y are presidents and x first

took office earlier than y}
A("R") = {Republican presidents}
A("j') = Andrew Jackson

Let σ be the following variable assignment for A:

σ("x") = George Washington
σ("y") = Abraham Lincoln
σ("z") = Richard Nixon
σ(every other variable) = Harry Truman

Thus σ satisfies "Exy" because Washington took office before
Lincoln." σ doesn't satisfy "Ezw" because Nixon was later than
Truman. σ satisfies the conditional "(Ezw → Rw)" because it
fails to satisfy the antecedent. σ doesn't satisfy "(Eyz → Rj),"
since it satisfies the antecedent ─ Lincoln was earlier than
Nixon ─ but it doesn't satisfy the consequent ─ Jackson wasn't a
Republican.

Now consider the variable assignment ρ with

ρ("x") = George Washington
ρ("y") = Ronald Reagan
ρ("z") = Richard Nixon
ρ(every other variable) = Harry Truman

Predicate Calculus, p. 14

Thus σ and ρ agree on the value they assign to every variable
other than "y," so that ρ is a "y"-variant of σ. ρ satisfies "(Ry
∧ Ezy)," since Reagan was a Republican who took office after
Nixon. Since ρ is a "y"-variant of σ that satisfies "(Ry ∧ Ezy),"
σ satisfies "(∃ y)(Ry ∧ Ezy)." σ doesn't satisfy "(Ry ∧ Ezy),"
since Nixon took office later than Lincoln. Hence σ satisfies
"((∃ y)(Ry ∧ Ezy) ∧ ¬(Ry ∧ Ezy))."

Let τ be an "x"-variant of σ. Then τ("y") = σ("y") = Lin-
coln. We don't know who τ("x") is, but, whoever τ("x") is, we
know that τ won't satisfy "(Rx ∧ Exy)," because there were no
Republican presidents earlier than Lincoln. Since every "x"-
variant of σ satisfies "¬(Rx ∧ Exy," σ satisfies "(∀ x)¬(Rx ∧
Exy)."

Let µ be the variable assignment given by

µ("x") = Bill Clinton
µ("y") = Abraham Lincoln
µ("z") = Richard Nixon
µ(every other variable) = Harry Truman

Thus µ is an "x"-variant of σ. Let v be a "y"-variant of µ. Even
without knowing who v("y") is, we can be confident that v satis-
fies "(Ry → Eyx)," since, if v("y") is any member of |A| other
than Clinton, v will satisfy the consequent, whereas, if v("y")
happens to be Clinton, v will fail to satisfy the antecedent.
Since every "y"-variant of µ satisfies "(Ry → Eyx)," µ satisfies
"(∀ y)(Ry → Eyx)." Since µ is an "x"-variant of σ which satisfies
"(∀ y)(Ry → Eyx)," we see that σ satisfies "(∃ x)(∀ y)(Ry → Eyx)."
Indeed, every variable assignment satisfies "(∃ x)(∀ y)(Ry →
Eyx)." "(∃ x)(∀ y)(Ry → Eyx)" is a true sentence and, as we shall
now see, a true sentence is satisfied by every variable
assignment, whereas a false sentence is satisfied by nothing.⌧

Lemma on Irrelevant Variables. If σ and ρ are
variable assignments for A which assign the same
values to all the variables that occur free in φ,
then σ satisfies φ under A iff ρ does.

Predicate Calculus, p. 15

The proof proceeds in the usual way. We let Σ be the set of
formulas φ such that, whenever σ and ρ are variable assignments
that agree on the values they assign the variables that occur
free in φ, σ satisfies φ iff ρ satisfies φ. Then we show that Σ
contains the atomic formulas and that it's closed under disjunc-
tion, conjunction, negation, forming conditionals, forming
biconditionals, universal quantification, and existential quanti-
fication. The proof is so similar to the proof that the Law of
Bivalence holds for the monadic predicate calculus that there's
no point in going through it again here.⌧

Definition. A sentence is true under A iff it is
satisfied under A by every variable assignment
for A. A sentence is false under A iff it is
satisfied by no variable assignment for A.

The Lemma on Irrelevant Variables has the following immediate
consequences:

Principle of Bivalence. Under a given interpreta-
tion, every sentence is either true or false.

Corollary. For any sentence φ, interpretation A,
and variable assignment σ for A, φ is true under
iff φ is satisfied by σ under A.

Corollary. A universal sentence (∀ v)φ is true
under A iff every variable assignment for A
satisfies φ under A. An existential sentence (∃ v)φ
is true under A iff some variable assignment sat-
isfies φ under A.

If φ is a formula with only the variable v free, we can
continue to talk about an individual satisfying φ, just as we did
when we were working on the monadic predicate calculus. Where
is an interpretation and a a member of |A|, we will say that a
satisfies φ under A to mean that every variable assignment σ with
σ(v) = a satisfies φ under A. According to the Lemma on Irrele-
vant Variables, this will hold whenever there is even one vari-
able assignment with σ(v) = a that satisfies φ.

Predicate Calculus, p. 16

The proofs of the following results are virtually unchanged
from the monadic predicate calculus:

Substitution Principle. If A(c) = σ(v), then σ
satisfies φv/c under A iff σ satisfies φ under A.

Locality Principle. Let A and B be two interpre-
tations which have the same universe of discourse
and which assign the same values to all the indi-
vidual constants and predicates that occur within
the formula φ. Then, for any variable assignment
σ, σ satisfies φ under A iff σ satisfies φ under
B.

While most of our results from the monadic predicate calcu-
lus carry over to the full predicate calculus, not everything is
the same. Thus, we saw that every consistent MPC sentence is true
in an interpretation with a finite universe. The same is not true
for the full predicate calculus. Thus consider the following
sentence:

((∀ x)(∃ y)Lxy ∧ ((∀ x)(∀ y)(∀ z)((Lxy ∧ Lyz) → Lxz) ∧
(∀ x)¬Lxx))

The sentence is certainly consistent, as we can see from consid-
ering an interpretation A with |A| = {natural numbers} and
A("L") = the less-than relation on the natural numbers. But the
sentence isn't true under any interpretation with a finite
universe. To see this, take an interpretation B under which the
sentence is true. Take a0 ∈ |B|. Because "(∀ x)(∃ y)Lxy" is true
under B, there must exist an element a1 of |B| such that <a0,a1>
∈ B("L"); because "(∀ x)¬Lxx" is true under B, a1 must be
different from a0. Because "(∀ x)(∃ y)Lxy" is true under B, there
must exist an element a2 of |B| with <a1,a2> ∈ B("L"). Because
the sentence "(∀ x)(∀ y)(∀ z)((Lxy ∧ Lyz) → Lxz)" is true in B,
<a0,a2> must be in B("L"). It follows from the fact that
"(∀ x)¬Lxx" is true in B that a2 is distinct from both a0 and a1.
Because "(∀ x)(∃ y)Lxy" is true in B, there must exist an element
a3 of |B| such that <a2,a3> ∈ B("L"). Because "(∀ x)(∀ y)(∀ z)((Lxy
∧ Lyz) → Lxz)" is true in B, <a1,a3> and <a0,a3> must both be in
B("L"). Since "(∀ x)¬Lxx" is true in , a3 must be distinct from

Predicate Calculus, p. 17

a0, from a1, and from a2. And so on. We find a4 with <a3,a4`> ∈
B("L") and we show that a4 is different from a0, a1, a2, and a3.
Then we find a5 with <a4,a5> ∈ B("L") and we show that a5 is
different from a0, a1, a2, a3, and a4. The process continues
forever, so we conclude that |B| must be infinite.

For the monadic predicate calculus, we found that there was
a mechanical procedure for testing whether a given sentence is
valid, though the method, we must admit, was too cumbersome to be
of much practical use. One of the fundamental results in the
theory of computability is that there is no such procedure for
the full predicate calculus:

Church's Theorem. There can be no algorithm for
testing whether a given sentence is valid in the
predicate calculus.

What an amazing result! The theorem tells us, not merely
that, as a matter of fact, right now today no one has written
down an algorithm for testing validity in the predicate calculus.
It tells us that there will never be such an algorithm, no matter
how clever people become in the future. Church's Theorem is a
fundamental limitation, like the facts that no one will ever
travel faster than light and no one will ever carry out measure-
ments more precise than permitted by the Heisenberg Uncertainty
Principle. Unfortunately, we won't be able to discuss Church's
Theorem more fully here.

A decision procedure for validity in the predicate calculus
would be a mechanical procedure by which, for a given sentence,
we can test, one way or another, whether the sentence is valid.
Church’s Theorem tells us that there is no such procedure. There
is, however, a proof procedure, a method by which any sentence
that is valid can be shown to be valid. Namely, we derive the
sentence from the empty set, using the full-predicate-calculus
version of the rules of derivation we learned for the MPC. If a
sentence is valid, we can derive it form the empty set, and, if
we can derive a sentence from the empty set, it is valid. So if
a sentence is valid, we have a way of showing it's valid. The
trouble is that an invalid sentence is invalid. If a sentence is
invalid, we won't be able to prove it. But the fact that we
haven't been able to produce a proof for a given sentence doesn't
show that the sentence is unprovable. Maybe there is a proof, but
we haven't been clever enough or patient enough to produce it.

Predicate Calculus, p. 18

The fact that we have worked for seventy-two hours ─ or seventy-
two years ─ at trying to prove a sentence without success doesn't
prove that the sentence isn't provable, so it doesn't prove that
the sentence isn't valid.

For validity in the full predicate calculus, we have no
decision procedure, but we have a proof procedure. We’ll take
that up in the next chapter. In the meantime, we’ll learn a
little more about the semantics of the predicate calculus.

We’ve already stipulated that two sentences are logically
equivalent iff they are true under precisely the same interpreta-
tions. Let us now generalize this notion to formulas that contain
free variables.

Definition. Two formulas are materially equivalent
with respect to an interpretation A just in case
they are satisfied in A by precisely the same
variable assignments for A.

Proposition. Suppose that φ1 and φ2 are materially
equivalent with respect to A. Let ψ1 and ψ2 be two
formulas that are alike except that ψ1 contains φ1
as a subformula at some places where ψ2 contains
φ2. Then ψ1 and ψ2 are materially equivalent with
respect to A.

Proof: Suppose not. Let ψ1 be a simplest formula such that there
exists a formula ψ2 which is just like ψ1 except that ψ1 contains
φ1 at some places where ψ2 contains φ2 such that ψ1 and ψ2 are not
materially equivalent with respect to A. ψ1 must not be equal to
φ1, since if it were, ψ2 would be identical to φ2 and, by hypothe-
sis, φ1 and φ2 are materially equivalent with respect to A. So ψ1
must contain φ1 as a proper part. That means that ψ1 can’t be
atomic, since atomic formulas don’t have any formulas as proper
parts. There are seven other possibilities:
ψ1 is a conjunction, say (χ1 ∧ θ1). Then ψ2 has the form (χ2 ∧ θ2),
where either χ2 = χ1 or else they differ in that χ1 contains φ1 at
some or more places where χ2 contains φ2. Similarly for θ2. Be-
cause ψ1 is a simplest formula for which the theorem we’re trying
to prove fails, we know that χ1 is materially equivalent to χ2 and

Predicate Calculus, p. 19

that θ1 is materially equivalent to θ2. For any variable assign-
ment σ, we have:

σ satisfies (χ1 ∧ θ1) with respect to A
iff σ satisfies both χ1 and θ1 with respect to A
iff σ satisfies both χ2 and θ2 with respect to A
iff σ satisfies (χ2 ∧ θ2) with respect to A.

The other cases are similar._X
Definition. Two formulas are logically equivalent
iff they are materially equivalent with respect to
every interpretation.

Corollary. Suppose that φ1 and φ2 are logically
equivalent, and let ψ1 and ψ2 be two formulas that
are alike except that ψ1 contains φ1 as a subform-
ula at some places where ψ2 contains φ2. Then ψ1
and ψ2 are logically equivalent.

Definition. A formula is said to be in prenex form
if its quantifiers (if it has any) all occur at
the very beginning of the formula, followed by a
formula that is quantifier-free.

Theorem. For any formula, there is a logically
equivalent formula in prenex form.

Proof: For a given formula, perform the following operations.
First, replace all subformulas of the form (ψ ↔ χ) by ((ψ → χ) ∧
(χ → ψ)). This will still give you a formula logically
equivalent to the one you started with. Next, change the bound
variables so that no variable occurs both free and bound within
the formula, and so that no variable occurs within a quantifier
more than once. A change of bound variables will leave you with a
formula equivalent to the one you started with. Finally,
repeatedly apply the following lemma to pull all the quantifiers
to the front, working from the outside in:

Lemma. Suppose that the variable v doesn’t appear
in the formula ψ. For any formula φ we have:

((∀ v)φ ∧ ψ) is logically equivalent to (∀ v)(φ ∧ ψ).

Predicate Calculus, p. 20

(ψ ∧ (∀ v)φ) is logically equivalent to (∀ v)(ψ ∧ φ).
((∃ v)φ ∧ ψ) is logically equivalent to (∃ v)(φ ∧ ψ).
(ψ ∧ (∃ v)φ) is logically equivalent to (∃ v)(ψ ∧ φ).
((∀ v)φ ∨ ψ) is logically equivalent to (∀ v)(φ ∨ ψ).
(ψ ∨ (∀ v)φ) is logically equivalent to (∀ v)(ψ ∨ φ).
((∃ v)φ ∨ ψ) is logically equivalent to (∃ v)(φ ∨ ψ).
(ψ ∨ (∃ v)φ) is logically equivalent to (∃ v)(ψ ∨ φ).
((∀ v)φ → ψ) is logically equivalent to (∃ v)(φ →
ψ).
(ψ → (∀ v)φ) is logically equivalent to (∀ v)(ψ →
φ).
((∃ v)φ → ψ) is logically equivalent to (∀ v)(φ →
ψ).
(ψ → (∃ v)φ) is logically equivalent to (∃ v)(ψ →
φ).
¬(∀ v)φ is logically equivalent to (∃ v)¬φ.
¬(∃ v)φ is logically equivalent to (∀ v)¬φ.

Example: Let’s find a prenex equivalent to the formula
“((∀ x)(∃ y)Fxy ↔ (∃ x)Fzx).” First, we get rid of the “↔”:

(((∀ x)(∃ y)Fxy → (∃ x)Fzx) ∧ ((∃ x)Fzx →
(∀ x)(∃ y)Fxy))

Next, we change bound variables:

(((∀ x)(∃ y)Fxy → (∃ w)Fzw) ∧ ((∃ v)Fzv →
(∀ u)(∃ t)Fut))

Now we start moving the quantifiers forward:

((∃ x)((∃ y)Fxy → (∃ w)Fzw) ∧ ((∃ v)Fzv →
(∀ u)(∃ t)Fut))

((∃ x)(∀ y)(Fxy → (∃ w)Fzw) ∧ ((∃ v)Fzv →
(∀ u)(∃ t)Fut))

((∃ x)(∀ y)(∃ w)(Fxy → Fzw) ∧ ((∃ v)Fzv →
(∀ u)(∃ t)Fut))

Predicate Calculus, p. 21

((∃ x)(∀ y)(∃ w)(Fxy → Fzw) ∧ (∀ v)(Fzv →
(∀ u)(∃ t)Fut))

((∃ x)(∀ y)(∃ w)(Fxy → Fzw) ∧ (∀ v)(∀ u)(Fzv →
(∃ t)Fut))

((∃ x)(∀ y)(∃ w)(Fxy → Fzw) ∧ (∀ v)(∀ u)(∃ t)(Fzv →
Fut))

(∃ x)((∀ y)(∃ w)(Fxy → Fzw) ∧ (∀ v)(∀ u)(∃ t)(Fzv →
Fut))

(∃ x)(∀ y)((∃ w)(Fxy → Fzw) ∧ (∀ v)(∀ u)(∃ t)(Fzv →
Fut))

(∃ x)(∀ y)(∃ w)((Fxy → Fzw) ∧ (∀ v)(∀ u)(∃ t)(Fzv →
Fut))

(∃ x)(∀ y)(∃ w)(∀ v)((Fxy → Fzw) ∧ (∀ u)(∃ t)(Fzv →
Fut))

(∃ x)(∀ y)(∃ w)(∀ v)(∀ u)((Fxy → Fzw) ∧ (∃ t)(Fzv →
Fut))

(∃ x)(∀ y)(∃ w)(∀ v)(∀ u)(∃ t)((Fxy → Fzw) ∧ (Fzv →
Fut))

There were lots of other possibilities for the order in which
we chose to bring the quantifiers forward, so there were lots
of other answers we might have gotten here (all logically
equivalent, of course.)_X

