Logic I - Session 11

Plan for today

- Damien's comments on quiz
- My comments on teaching feedback
- A bit more on the TF-completeness of SL
- @ Recap of proof of soundness of SD: If $\Gamma \vdash P$ in SD, then $\Gamma \models P$
- Begin to prove completeness of SD: If $\Gamma \models P$, then $\Gamma \vdash P$ in SD

TF-completeness

- We can express any truth-function in SL.
- Find a sentence that expresses the TF for this TT schema:

Т	Т	Т	A&B
Т	F	F	A&~B
F	Т	Т	~A&B
F	F	F	~A&~B

- We want an iterated disjunction of CSs for the T rows: 1 and 3.
- (A&B) v (~A&B).

TF-completeness

- Strictly, we haven't yet proven that SL is TF-complete. We'd need to show that our algorithm always yields a sentence that expresses the truthfunction we want. See 6.1E (1d) and 6.2E (1).
- Not only is SL truth-functionally complete, but so is any language that contains formulae TF-equivalent to every sentence of SL.
- \odot E.g. $\{\&,v,\sim\}$. (After all, that's all we use in our algorithm!)
- In fact, we can achieve TF-completeness with a single binary connective, '|'.

Р	Q	PIQ
T	T	F
T	F	T
F	T	Т
F	F	T

TF-completeness with 'l'

- To see this, just add a step to our algorithm: translate the old sentence into one that only contains '|'.
- The new one will be equivalent, so it will have the same TT, so it will expresses the same truth-function.
- In our example, our algorithm generated (A&B) v (~A&B).
- To find an equivalent sentence, make replacements in stages.

TF-completeness with 'l'

- We start with $(A\&B)v(\sim A\&B)$, which is of the form PvQ.
- Now,PvQ iff(P|P) | (Q|Q).
- \odot Substitute (A&B) and (\sim A&B) for P and Q
- ((A&B)\(\alpha\A&B)\) ((A&B)\(\alpha\B\B)\) ((\alpha\B\B)\(\alpha\B\B)\)
- Now replace the remaining sub-sentences.
- (A&B) iff (A|B)|(A|B). And (~A&B) iff ((A|A)|B)|((A|A)|B).
- So we get: ((A|B)|(A|B) | (A|B)|(A|B)) | (((A|A)|B)|((A|A)|B) | ((A|A)|B)|((A|A)|B))

TF-completeness with 'l'

- We've just looked at one sentence. We haven't yet proven that a language L with just '|' is TF-complete.
- To do that, we need to prove that for any sentence of SL, there is an equivalent sentence in L.
- Provide an algorithm Z that makes step-by-step replacements like we did. Then prove that:
 - Each step of Z preserves TV, and
 - \circ For any P_{SL} of SL, Z turns P_{SL} into a sentence P_L of L.

- Basic strategy to show soundness of SD: Use MI to prove that (*) holds for any line n of any SD derivation:
 - (*) If Pn is the sentence on line n and Pn is in the scope of only the assumptions in Γ n, then Γ n \models Pn.
- So for our induction sequence, we use lines of SD derivations.
- For basis clause: (*) holds for n=1.
- For inductive clause: if (*) holds up to line n, it holds for n+1.
 - Pn+1 had to be justified by applying some SD rule to earlier lines. So, prove for each SD rule X: If Pn+1 is justified by X and (*) holds up to the nth line, then (*) holds for the n+1st.

- (*) If Pn is the sentence on line n and Pn is in the scope of only the assumptions in Γ n, then Γ n \models Pn.
- Most of the proof involves the last step, going through each rule to prove this:
 - For each SD rule X: If Pn+1 is justified by X and (*) holds up to the nth line, then (*) holds for the n+1st.
- Last time, we went through &E and ~I. Let's do one more: ⊃I.
- So suppose Pn+1 is justified by applying $\supset I$, and that (*) holds through line n. Then Pn+1 is of the form $Qi\supset Rk$.
- So, to prove: If $\mathbf{Qi} \supset \mathbf{Rk}$ on line n+1 is justified by $\supset \mathbf{I}$ and is in the scope only of assumptions in $\Gamma n+1$, then $\Gamma n+1 \models \mathbf{Qi} \supset \mathbf{Rk}$.

- Since $Qi \supset Rk$ is justified by $\supset I$, we have a subderivation from an auxiliary assumption Qi on line i to Rk on line k, where i < k < n+1.
- And since (*) applies for all n < n+1, it applies to i and k.</p>
- \circ So $\Gamma k \models \mathbf{R} \mathbf{k}$.
- Now note that since $\mathbf{Qi} \supset \mathbf{Rk}$ on line n+1 is justified by applying $\supset \mathbf{I}$ to the subderivation on i-k, no assumptions in Γk can have been closed before n+1 except \mathbf{Qi} .
- In other words, every assumption open at k, apart from Qi, must still be open at n+1.
- **So** Γ k ⊆ Γ n+1 ∪ {Qi}.

- So far we have:
 - \circ (a) $\Gamma k \subseteq \Gamma n+1 \cup \{Qi\}$, and
 - \circ (b) $\Gamma k \models \mathbf{R} \mathbf{k}$.
- \odot Now remember from last time that for any sets $\Gamma 1$ and $\Gamma 2$:
 - If Γ1 ⊆ Γ2, then if Γ1 ⊨ S, then Γ2 ⊨ S.
- So in particular, from (a), we know that since Γk ⊆ Γn+1 ∪ {Qi}:
- So putting together (b) and (c): Γn+1 ∪ {Qi} ⊨ Rk.
- ⊗ So Γ n+1 \models Qi \supset Rk. I.e. Γ n+1 \models Pn+1.

- To prove: If Γ ⊨ P, then Γ ⊢ P (in SD).
- By contraposition, this is equivalent to:
 - \circ $\Gamma \not\vdash P$ then $\Gamma \not\models P$.
- \odot So we can assume $\Gamma \nvdash P$ and try to prove $\Gamma \nvdash P$.
- We need lots of intermediate steps to do it...
- ...and an important new notion: maximal consistency
 - $m{\circ}$ Γ is maximally consistent in SD (MC-SD) iff Γ is consistent in SD and Γ would become inconsistent if **any** additional sentence were added to it.

```
Plan for proving
            \circ \Gamma \nvdash P
              (1)
                                                                  completeness

    Γ ∪ {~P} is C-SD

             (4) ↓
            \circ \Gamma \cup \{\sim P\} \subseteq \Gamma^* (for some \Gamma^* that's MC-SD) (6.4.5)
(5) \rightarrow \circ For any \Gamma^* that's MC-SD, \Gamma^* is TF-C
                                                                                    (6.4.8)
             (3) ↓
            \circ \Gamma \cup {\sim} P is TF-C
             (2) <del>|</del>
            \circ \Gamma \not\models \mathbf{P}
```

- \circ $\Gamma \not\vdash P$ then $\Gamma \not\models P$.
- \bullet If $\Gamma \models P$, then $\Gamma \vdash P$.

- \odot To prove: If $\Gamma \nvdash P$, then $\Gamma \cup \{\sim P\}$ is C-SD
 - Suppose $\Gamma \cup \{ \sim P \}$ is NOT C-SD. Then it's inconsistent in SD.
 - \odot Then, by def., some \mathbf{Q} and $\sim \mathbf{Q}$ are derivable from it.
 - But that means we can derive $\mathbf Q$ and ${}^{\sim}\mathbf Q$ in a sub-derivation from Γ together with the assumption ${}^{\sim}\mathbf P$.
 - We could then perform ~E on the subderivation, yielding P.
 - lacktriangle So we could get f P in the scope of only the assumptions in Γ .
- \circ So if $\Gamma \cup \{\sim P\}$ is NOT C-SD, then $\Gamma \vdash P$.
- \circ So if $\Gamma \not\vdash P$, then $\Gamma \cup \{\sim P\}$ is C-SD

```
○ 「 ⊬ P
↓ ✓
○ 「 । {~ P} is C~
```

Plan for proving completeness

$$\circ$$
 $\Gamma \cup \{\sim P\} \subseteq \Gamma^*$ (for some Γ^* that's MC-SD) (6.4.5)

$$\rightarrow$$
 For any Γ^* that's MC-SD, Γ^* is TF-C (6.4.8)

$$\Gamma \cup {\sim} P$$
 is TF-C

$$\circ$$
 $\Gamma \not\models \mathbf{P}$

 \circ $\Gamma \not\vdash P$ then $\Gamma \not\models P$.

$$\bullet$$
 If $\Gamma \models P$, then $\Gamma \vdash P$.

- Next, let's prove:
 - If $\Gamma \cup \{\sim P\}$ is TF-consistent (TF-C), then $\Gamma \nvDash P$.
- \circ So assume $\Gamma \cup \{ \sim P \}$ is TF-consistent (TF-C).
- @ By def., there's a TVA that m.e.m. $\Gamma \cup \{ \sim P \}$ true.
- A TVA m.e.m. true $\Gamma \cup \{ \sim P \}$ iff it m.e.m. Γ true and P false.
- \odot So there's a TVA that m.e.m. Γ true and P false.
- So by def., $\Gamma \models \mathbf{P}$ iff there's NO TVA that does that.
- \circ So $\Gamma \not\models P$.

$$\circ$$
 $\Gamma \cup \{\sim P\} \subseteq \Gamma^*$ (for some Γ^* that's MC-SD) (6.4.5)

$$\rightarrow$$
 For any Γ^* that's MC-SD, Γ^* is TF-C (6.4.8)

$$\circ$$
 $\Gamma \cup {\sim} P$ is TF-C

$$\downarrow V$$

$$\circ$$
 $\Gamma \not\models P$

 \circ $\Gamma \not\vdash P$ then $\Gamma \not\models P$.

$$\bullet$$
 If $\Gamma \models P$, then $\Gamma \vdash P$.

- Next, let's prove:
 - If $\Gamma \cup \{\sim P\} \subseteq \Gamma^*$ for some Γ^* that's MC-SD and for any Γ^* that's MC-SD, Γ^* is TF-C, then $\Gamma \cup \{\sim P\}$ is TF-C
- So assume $\Gamma \cup \{\sim P\} \subseteq \Gamma^*$ for some Γ^* that's MC-SD and for any Γ^* that's MC-SD, Γ^* is TF-C.
 - Suppose $\Gamma \cup \{ \sim P \}$ is NOT TF-C.
 - Then there's no TVA that m.e.m. $\Gamma \cup \{ \sim P \}$ true.
 - But since $\Gamma \cup \{\sim P\} \subseteq \Gamma^*$, any TVA that m.e.m. Γ^* true would also m.e.m. $\Gamma \cup \{\sim P\}$ true.
 - \odot So there's no TVA that m.e.m. Γ^* true.

- I.e.: Γ^* is NOT TF-C.
- But since Γ^* is MC-SD, and for any Γ^* that's MC-SD, Γ^* is TF-C, Γ^* is TF-C.
- \odot Our assumption led to a contradiction. So $\Gamma \cup \{\sim P\}$ is TF-C

Plan for proving completeness

$$\circ$$
 $\Gamma \cup \{\sim P\} \subseteq \Gamma^*$ (for some Γ^* that's MC-SD) (6.4.5)

$$\rightarrow$$
 \circ For any Γ^* that's MC-SD, Γ^* is TF-C (6.4.8)

 \circ $\Gamma \cup {\sim} P$ is TF-C

 \circ $\Gamma \not\models P$

 \circ $\Gamma \not\vdash P$ then $\Gamma \not\models P$.

$$\bullet$$
 If $\Gamma \models P$, then $\Gamma \vdash P$.

MIT OpenCourseWare http://ocw.mit.edu

24.241 Logic I

Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.