Logic I - Session 11 ### Plan for today - Damien's comments on quiz - My comments on teaching feedback - A bit more on the TF-completeness of SL - @ Recap of proof of soundness of SD: If $\Gamma \vdash P$ in SD, then $\Gamma \models P$ - Begin to prove completeness of SD: If $\Gamma \models P$, then $\Gamma \vdash P$ in SD ### TF-completeness - We can express any truth-function in SL. - Find a sentence that expresses the TF for this TT schema: | Т | Т | Т | A&B | |---|---|---|-------| | Т | F | F | A&~B | | F | Т | Т | ~A&B | | F | F | F | ~A&~B | - We want an iterated disjunction of CSs for the T rows: 1 and 3. - (A&B) v (~A&B). ## TF-completeness - Strictly, we haven't yet proven that SL is TF-complete. We'd need to show that our algorithm always yields a sentence that expresses the truthfunction we want. See 6.1E (1d) and 6.2E (1). - Not only is SL truth-functionally complete, but so is any language that contains formulae TF-equivalent to every sentence of SL. - \odot E.g. $\{\&,v,\sim\}$. (After all, that's all we use in our algorithm!) - In fact, we can achieve TF-completeness with a single binary connective, '|'. | Р | Q | PIQ | |---|---|-----| | T | T | F | | T | F | T | | F | T | Т | | F | F | T | ## TF-completeness with 'l' - To see this, just add a step to our algorithm: translate the old sentence into one that only contains '|'. - The new one will be equivalent, so it will have the same TT, so it will expresses the same truth-function. - In our example, our algorithm generated (A&B) v (~A&B). - To find an equivalent sentence, make replacements in stages. # TF-completeness with 'l' - We start with $(A\&B)v(\sim A\&B)$, which is of the form PvQ. - Now,PvQ iff(P|P) | (Q|Q). - \odot Substitute (A&B) and (\sim A&B) for P and Q - ((A&B)\(\alpha\A&B)\) ((A&B)\(\alpha\B\B)\) ((\alpha\B\B)\(\alpha\B\B)\) - Now replace the remaining sub-sentences. - (A&B) iff (A|B)|(A|B). And (~A&B) iff ((A|A)|B)|((A|A)|B). - So we get: ((A|B)|(A|B) | (A|B)|(A|B)) | (((A|A)|B)|((A|A)|B) | ((A|A)|B)|((A|A)|B)) ## TF-completeness with 'l' - We've just looked at one sentence. We haven't yet proven that a language L with just '|' is TF-complete. - To do that, we need to prove that for any sentence of SL, there is an equivalent sentence in L. - Provide an algorithm Z that makes step-by-step replacements like we did. Then prove that: - Each step of Z preserves TV, and - \circ For any P_{SL} of SL, Z turns P_{SL} into a sentence P_L of L. - Basic strategy to show soundness of SD: Use MI to prove that (*) holds for any line n of any SD derivation: - (*) If Pn is the sentence on line n and Pn is in the scope of only the assumptions in Γ n, then Γ n \models Pn. - So for our induction sequence, we use lines of SD derivations. - For basis clause: (*) holds for n=1. - For inductive clause: if (*) holds up to line n, it holds for n+1. - Pn+1 had to be justified by applying some SD rule to earlier lines. So, prove for each SD rule X: If Pn+1 is justified by X and (*) holds up to the nth line, then (*) holds for the n+1st. - (*) If Pn is the sentence on line n and Pn is in the scope of only the assumptions in Γ n, then Γ n \models Pn. - Most of the proof involves the last step, going through each rule to prove this: - For each SD rule X: If Pn+1 is justified by X and (*) holds up to the nth line, then (*) holds for the n+1st. - Last time, we went through &E and ~I. Let's do one more: ⊃I. - So suppose Pn+1 is justified by applying $\supset I$, and that (*) holds through line n. Then Pn+1 is of the form $Qi\supset Rk$. - So, to prove: If $\mathbf{Qi} \supset \mathbf{Rk}$ on line n+1 is justified by $\supset \mathbf{I}$ and is in the scope only of assumptions in $\Gamma n+1$, then $\Gamma n+1 \models \mathbf{Qi} \supset \mathbf{Rk}$. - Since $Qi \supset Rk$ is justified by $\supset I$, we have a subderivation from an auxiliary assumption Qi on line i to Rk on line k, where i < k < n+1. - And since (*) applies for all n < n+1, it applies to i and k.</p> - \circ So $\Gamma k \models \mathbf{R} \mathbf{k}$. - Now note that since $\mathbf{Qi} \supset \mathbf{Rk}$ on line n+1 is justified by applying $\supset \mathbf{I}$ to the subderivation on i-k, no assumptions in Γk can have been closed before n+1 except \mathbf{Qi} . - In other words, every assumption open at k, apart from Qi, must still be open at n+1. - **So** Γ k ⊆ Γ n+1 ∪ {Qi}. - So far we have: - \circ (a) $\Gamma k \subseteq \Gamma n+1 \cup \{Qi\}$, and - \circ (b) $\Gamma k \models \mathbf{R} \mathbf{k}$. - \odot Now remember from last time that for any sets $\Gamma 1$ and $\Gamma 2$: - If Γ1 ⊆ Γ2, then if Γ1 ⊨ S, then Γ2 ⊨ S. - So in particular, from (a), we know that since Γk ⊆ Γn+1 ∪ {Qi}: - So putting together (b) and (c): Γn+1 ∪ {Qi} ⊨ Rk. - ⊗ So Γ n+1 \models Qi \supset Rk. I.e. Γ n+1 \models Pn+1. - To prove: If Γ ⊨ P, then Γ ⊢ P (in SD). - By contraposition, this is equivalent to: - \circ $\Gamma \not\vdash P$ then $\Gamma \not\models P$. - \odot So we can assume $\Gamma \nvdash P$ and try to prove $\Gamma \nvdash P$. - We need lots of intermediate steps to do it... - ...and an important new notion: maximal consistency - $m{\circ}$ Γ is maximally consistent in SD (MC-SD) iff Γ is consistent in SD and Γ would become inconsistent if **any** additional sentence were added to it. ``` Plan for proving \circ \Gamma \nvdash P (1) completeness Γ ∪ {~P} is C-SD (4) ↓ \circ \Gamma \cup \{\sim P\} \subseteq \Gamma^* (for some \Gamma^* that's MC-SD) (6.4.5) (5) \rightarrow \circ For any \Gamma^* that's MC-SD, \Gamma^* is TF-C (6.4.8) (3) ↓ \circ \Gamma \cup {\sim} P is TF-C (2) | \circ \Gamma \not\models \mathbf{P} ``` - \circ $\Gamma \not\vdash P$ then $\Gamma \not\models P$. - \bullet If $\Gamma \models P$, then $\Gamma \vdash P$. - \odot To prove: If $\Gamma \nvdash P$, then $\Gamma \cup \{\sim P\}$ is C-SD - Suppose $\Gamma \cup \{ \sim P \}$ is NOT C-SD. Then it's inconsistent in SD. - \odot Then, by def., some \mathbf{Q} and $\sim \mathbf{Q}$ are derivable from it. - But that means we can derive $\mathbf Q$ and ${}^{\sim}\mathbf Q$ in a sub-derivation from Γ together with the assumption ${}^{\sim}\mathbf P$. - We could then perform ~E on the subderivation, yielding P. - lacktriangle So we could get f P in the scope of only the assumptions in Γ . - \circ So if $\Gamma \cup \{\sim P\}$ is NOT C-SD, then $\Gamma \vdash P$. - \circ So if $\Gamma \not\vdash P$, then $\Gamma \cup \{\sim P\}$ is C-SD ``` ○ 「 ⊬ P ↓ ✓ ○ 「 । {~ P} is C~ ``` # Plan for proving completeness $$\circ$$ $\Gamma \cup \{\sim P\} \subseteq \Gamma^*$ (for some Γ^* that's MC-SD) (6.4.5) $$\rightarrow$$ For any Γ^* that's MC-SD, Γ^* is TF-C (6.4.8) $$\Gamma \cup {\sim} P$$ is TF-C $$\circ$$ $\Gamma \not\models \mathbf{P}$ \circ $\Gamma \not\vdash P$ then $\Gamma \not\models P$. $$\bullet$$ If $\Gamma \models P$, then $\Gamma \vdash P$. - Next, let's prove: - If $\Gamma \cup \{\sim P\}$ is TF-consistent (TF-C), then $\Gamma \nvDash P$. - \circ So assume $\Gamma \cup \{ \sim P \}$ is TF-consistent (TF-C). - @ By def., there's a TVA that m.e.m. $\Gamma \cup \{ \sim P \}$ true. - A TVA m.e.m. true $\Gamma \cup \{ \sim P \}$ iff it m.e.m. Γ true and P false. - \odot So there's a TVA that m.e.m. Γ true and P false. - So by def., $\Gamma \models \mathbf{P}$ iff there's NO TVA that does that. - \circ So $\Gamma \not\models P$. $$\circ$$ $\Gamma \cup \{\sim P\} \subseteq \Gamma^*$ (for some Γ^* that's MC-SD) (6.4.5) $$\rightarrow$$ For any Γ^* that's MC-SD, Γ^* is TF-C (6.4.8) $$\circ$$ $\Gamma \cup {\sim} P$ is TF-C $$\downarrow V$$ $$\circ$$ $\Gamma \not\models P$ \circ $\Gamma \not\vdash P$ then $\Gamma \not\models P$. $$\bullet$$ If $\Gamma \models P$, then $\Gamma \vdash P$. - Next, let's prove: - If $\Gamma \cup \{\sim P\} \subseteq \Gamma^*$ for some Γ^* that's MC-SD and for any Γ^* that's MC-SD, Γ^* is TF-C, then $\Gamma \cup \{\sim P\}$ is TF-C - So assume $\Gamma \cup \{\sim P\} \subseteq \Gamma^*$ for some Γ^* that's MC-SD and for any Γ^* that's MC-SD, Γ^* is TF-C. - Suppose $\Gamma \cup \{ \sim P \}$ is NOT TF-C. - Then there's no TVA that m.e.m. $\Gamma \cup \{ \sim P \}$ true. - But since $\Gamma \cup \{\sim P\} \subseteq \Gamma^*$, any TVA that m.e.m. Γ^* true would also m.e.m. $\Gamma \cup \{\sim P\}$ true. - \odot So there's no TVA that m.e.m. Γ^* true. - I.e.: Γ^* is NOT TF-C. - But since Γ^* is MC-SD, and for any Γ^* that's MC-SD, Γ^* is TF-C, Γ^* is TF-C. - \odot Our assumption led to a contradiction. So $\Gamma \cup \{\sim P\}$ is TF-C # Plan for proving completeness $$\circ$$ $\Gamma \cup \{\sim P\} \subseteq \Gamma^*$ (for some Γ^* that's MC-SD) (6.4.5) $$\rightarrow$$ \circ For any Γ^* that's MC-SD, Γ^* is TF-C (6.4.8) \circ $\Gamma \cup {\sim} P$ is TF-C \circ $\Gamma \not\models P$ \circ $\Gamma \not\vdash P$ then $\Gamma \not\models P$. $$\bullet$$ If $\Gamma \models P$, then $\Gamma \vdash P$. MIT OpenCourseWare http://ocw.mit.edu 24.241 Logic I Fall 2009 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.