Logic I - Session 13

Plan

- Damien on psets
- Quick summary of completeness
- Compactness
- Limitations of SL
- Intro to PL

```
Completeness
                     \Gamma \nvdash \mathbf{P}
             \Gamma \cup \{\sim P\} is C-SD
\Gamma \cup \{\sim P\} \subseteq a MC-SD set \Gamma^*
                 \Gamma^* is MC-SD then \Gamma^* is TF-C
       If
                                                       \Gamma \cup \{\sim P\} \subseteq a \text{ TF-C set } \Gamma^*
                                                       \Gamma \cup \{\sim P\} is TF-C
                                                                 \Gamma \not\models \mathbf{P}
```

Compactness

- A cool result of completeness:
 - **©** Compactness: Γ is TF-C iff every finite subset of Γ is TF-C.
- \odot So: a set Γ is TF-IC only if a finite subset of Γ is TF-IC.
- So, intuitively, there's no TF inconsistency that you need an infinite number of SL sentences to get!
- Let's prove compactness by proving each direction.

Compactness

- First, left-to-right:
 - \bullet If Γ is TF-C, then every finite subset of Γ is TF-C.
 - $m{\varnothing}$ If there were a subset Γ such that no TVA m.e.m. Γ true, then there would be no TVA m.e.m. Γ true.
- Now, right-to-left:
 - \bullet If every finite subset of Γ is TF-C, then Γ is TF-C.
 - @ Equiv: If Γ is TF-IC, then some finite subset Γ of Γ is TF-IC.

Compactness

- \odot Assume Γ is TF-IC. Then there's no TVA that m.e.m. Γ true.
- lacktriangle So every TVA that m.e.m. Γ true makes some $\mathbf{R}\&_{\sim}\mathbf{R}$ true.
- That is: $\Gamma \models \mathbf{R} \& \sim \mathbf{R}$.
- \bullet So by completeness, $\Gamma \vdash \mathbf{R} \& \sim \mathbf{R}$.
- But since every derivation is finite, there's a finite $\Gamma' \subseteq \Gamma$ such that $\Gamma' \vdash \mathbf{R} \& \sim \mathbf{R}$.
- \bullet So by soundness, $\Gamma' \models \mathbf{R} \& \sim \mathbf{R}$.
- But no TVA makes R&~R true.
- \odot So no TVA makes Γ ' true. I.e. Γ ' is TF-IC.
- \odot So if Γ is TF-IC, then a finite subset of Γ is TF-IC.

Limitations of SL

- We want our formal language and derivation system to help us prove that certain arguments are valid, that certain sets of sentences are inconsistent, etc...
- SL can't do that for some arguments and sentences.
- Everything in the house smells bad.
 Fido is in the house.
 So, Fido smells bad.
- Nothing has horns and also wings. Some animals at Neverland Ranch have horns. All chickens have wings. So not all animals at Neverland Ranch are chickens.

MIT OpenCourseWare http://ocw.mit.edu

24.241 Logic I

Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.