Logic - Session 18

Applying our formal semantics

- Let I be the following interpretation: UD={a,b} F:{<a>} G:{}
- Show that $(\forall x)Fx$ is false on I.

 - So for arbitrary d, <den_{I,d[b/x]}(x)> ∉ I(F).
 - So by (2.), d[b/x] doesn't satisfy Fx on I.
 - So not: for every u∈UD, d[u/x] satisfies Fx on I.
 - So by (8.), not: d satisfies $(\forall x)Fx$.
 - So not every variable assignment satisfies (∀x)Fx.
 - So by def. of truth, $(\forall x)Fx$ is false on I.

Show: $(\exists x)(Fx\supset(\forall y)Gy)$ is true on I

- $(\exists x)(Fx\supset (\forall y)Gy)$ is true on I iff every d for I satisfies $(\exists x)(Fx\supset (\forall y)Gy)$ on I.
- By (9.), d satisfies $(\exists x)(Fx\supset (\forall y)Gy)$ on I iff for some $u\in UD$, d[u/x] satisfies $(Fx\supset (\forall y)Gy)$ on I.
- By (6.), for some u∈UD, d[u/x] satisfies (Fx⊃(∀y)Gy) on I iff for some u∈UD, either d[u/x] doesn't satisfy Fx on I or d[u/x] satisfies (∀y)Gy on I.
 - Prove the RHS.

- So for arbitrary d, <den_{I,d[b/x]}(x)> ∉ I(F).
- So by (2.), d[b/x] doesn't satisfy Fx on I.
- \odot So for some $u \in UD$, d[u/x] doesn't satisfy Fx on I.
- So for some u∈UD, either d[u/x] doesn't satisfy Fx on I or d[u/x] satisfies (∀y)Gy on I.
- So for some u∈UD, d[u/x] satisfies (Fx⊃(\forall y)Gy) on I.
- \odot So d satisfies $(\exists x)(Fx\supset (\forall y)Gy)$ on I.
- We picked an arbitrary d, so every d for I satisfies (∃x)(Fx⊃(∀y)Gy) on I.
- So (∃x)(Fx⊃(∀y)Gy) is true on I.

Show quantificationally true: $(\forall x)(Rxx\supset(\exists y)Rxy)$

- $(\forall x)(Rxx\supset(\exists y)Rxy)$ is q-true iff it's true on any I.
- Pick an arbitrary I and an arbitrary d.
- ø d satisfies (∀x)(Rxx⊃(∃y)Rxy) on I iff for any u∈UD,
 d[u/x] satisfies (Rxx⊃(∃y)Rxy) on I.
- ⑤ (For any u∈UD d[u/x] satisfies (Rxx⊃(∃y)Rxy) on I) iff (for any u∈UD, either d[u/x] doesn't satisfy Rxx or d[u/x] satisfies (∃y)Rxy on I.
- Prove that the right-hand side is true by reductio.

- Suppose RHS is false. Then for some u∈UD, d[u/x] satisfies Rxx on I and doesn't satisfy (∃y)Rxy on I.
- Pick an arbitrary u such that d[u/x] satisfies Rxx on I.
- \circ So by (2.), $den_{I,d[u/x][u/y]}(y)$, $den_{I,d[u/x][u/y]}(x) \in I(R)$.
- \circ So $\langle u,u \rangle \in I(R)$
- \circ So for some $v \in UD$, $den_{I,d[u/x][v/y]}(y)$, $den_{I,d[u/x][v/y]}(x) \in I(R)$.
- By (2.), for some v ∈ UD, d[u/x][v/y] satisfies Rxy on I.
- By (9.), d[u/x] satisfies (∃y)Rxy on I.
- ø u was arbitrary, for it's not the case that for some u∈UD, d[u/x] satisfies Rxx on I and doesn't satisfy (∃y)Rxy on I.

- Since it's not the case that for some u∈UD, d[u/x] satisfies Rxx on I and doesn't satisfy (∃y)Rxy on I:
- For any u∈UD, either d[u/x] doesn't satisfy Rxx or d[u/x] satisfies (∃y)Rxy on I.

We had:

- For any u∈UD, d[u/x] satisfies (Rxx⊃(∃y)Rxy) on I) iff (for any u∈UD, either d[u/x] doesn't satisfy Rxx or d[u/x] satisfies (∃y)Rxy on I.
- The RHS is true, so the LHS is too.
- So for any u∈UD, d[u/x] satisfies (Rxx⊃(∃y)Rxy) on I.
- So by (8.), d satisfies (∀x)(Rxx⊃(∃y)Rxy) on I.
- \circ d and I were arbitrary, so for any I, for any d, d satisfies $(\forall x)(Rxx\supset(\exists y)Rxy)$.
- So for any I, (∀x)(Rxx⊃(∃y)Rxy) is true on I.

MIT OpenCourseWare http://ocw.mit.edu

24.241 Logic I

Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.