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24.910
Laboratory Phonology

Spectral Analysis
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Reading: 
• Fujimura et al (1978)
• Johnson chapters 7 and 8.
Assignments:
• Measure formants of your vowels.



Spectral analysis techniques

There are two major spectral analysis techniques used with 
speech:

• Fourier analysis
• Linear Predictive Coding (LPC)

• Fourier analysis is used to calculate the spectrum of an 
interval of a sound wave.

• LPC attempts to estimate the properties of the vocal tract 
filter that produced a given interval of speech sound.



Fourier Analysis

• A complex wave can be analyzed as the 
sum of sinusoidal components.

• Fourier analysis determines what those 
components are for a given wave.

• The procedure we will use is the Discrete 
Fourier Transform.



Fourier Analysis

• The basic idea is to compare the speech wave with 
sinusoidal waves of different frequencies to 
determine the amplitude of that component 
frequency in the speech wave.

• What do we compare with what?
– A short interval (‘window’) of a waveform with:
– Sine and cosine waves with a period equal to the 

window length and 
– sine and cosine waves with multiples of this first 

frequency.



Fourier Analysis

• For each analysis frequency, we calculate how well the 
sine and cosine waves of that frequency correlate with the 
speech wave.

• This is measured by multiplying the amplitude of each 
point of the speech wave by the amplitude of the 
corresponding point in the sinusoid and summing the 
results (dot product).

• Intuitively:
– if the waves are similar, they will be positive at the same time and 

negative at the same time, so the multiplications will yield large 
numbers.

– if the waves are moving in opposite directions, the multiplications 
will yield negative numbers.



Fourier Analysis

• The degree of correlation indicates the relative 
amplitude of that frequency component in the 
complex wave.

• The correlation between two sinusoidal waves of 
different frequencies is always zero - i.e. the 
contribution of each frequency component to a 
complex wave is independent of the other 
frequency components.



Window length

• Window length is often measured in points (1 
point = 1 sample).
– e.g. 256 points at a sampling rate of 10 kHz is 

0.0256s (25.6 ms).
• Most speech analysis software uses the Fast 

Fourier Transform algorithm to calculate DFTs.
• This algorithm only works with window lengths 

that are powers of 2 (e.g. 64, 128, 256 points).



Frequency resolution

• The interval between the frequencies of successive 
components of  the analysis depends on the window 
length.

• The first component of the analysis is a wave with period 
equal to the window length

= 1/window duration
= sampling rate/window length

• E.g. with window length of 25.6ms, the first component if 
the DFT analysis has a frequency of 1/0.0256 s = 39 Hz.

• The other components are at multiples of  this frequency: 
78 Hz, 117 Hz,...

• so the components of the analysis are 39 Hz apart.



Frequency resolution

• A shorter window length implies that the first component 
has a higher frequency, so the interval between 
components is larger.

• So there is a trade-off between time resolution and 
frequency resolution in DFT analysis.

Window length   Interval between components
50 ms 20 Hz
25 ms 40 Hz
12.5 ms 80 Hz
6.4 ms 160 Hz



DFT - window length
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Frequency resolution

• A spectrogram consists of a sequence of fourier
spectra.

• The bandwidth of a spectrogram depends on the 
window length used to calculate the spectra.



Zero padding

• FFT only works on windows of 2n samples.
• If you select a different window length, most 

acoustic analysis software adds zero samples to 
the end of the signal to pad it out to 2n samples.

• This does not alter the overall shape of the 
spectrum.

• PRAAT will do DFT (no zero padding) and FFt
(zero padding as required).



Window function
• If we take n samples directly from a waveform, it may begin 

and end abruptly.
• As a result, the spectrum of such a wave would include 

spurious high frequency components.
• To avoid this problem we multiply the signal by a window 

function that goes smoothly from 0 to 1 and back again.
• There are many such window functions (Hamming, Hanning

etc). It doesn’t matter much which you use, but use one.

Hamming

Figure by MIT OpenCourseWare.



Window function
• Tapering the window only reduces the amplitude of spurious 

components, it does not eliminate them.



Window function

from mi.eng.cam.ac.uk/~ajr/SpeechAnalysis/

FFT of rectangular and Hamming windowed sine wave in dB
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Linear Predictive Coding
• The source-filter theory of speech production analyzes speech 

sounds in terms of a source, vocal tract filter and radiation 
function.



Source-Filter Model of Speech Production
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Linear Predictive Coding
• The source-filter theory of speech production analyzes speech 

sounds in terms of a source, vocal tract filter and radiation 
function.

• Linear Predictive Coding (LPC) analysis attempts to 
determine the properties of the vocal tract filter through 
‘analysis by synthesis’.



Linear Predictive Coding
• If we knew the form of the source and the output waveform, we could 

calculate the properties of the filter that transformed that source into that 
output.

• Since we don’t know the properties of the source, we make some simple 
assumptions: There are two types of source; flat spectrum ‘white noise’
for voiceless sounds, and a flat spectrum pulse train for voiced sounds.

• The spectral shape of the source can then be modeled by an additional 
filter.

• Thus the filter calculated by LPC analysis includes the effects of source 
shaping, the vocal tract transfer function, and the radiation characteristics. 

• However, both of these typically affect mainly spectral slope (for vowels, 
at least), so the locations of the peaks in the spectrum of the LPC filter 
still generally correspond to resonances of the vocal tract.



Linear Predictive Coding
• The various techniques for calculating LPC spectra are based 

around minimizing the difference between the predicted 
(synthesized) signal and the actual signal (i.e. the error).

(Actually the squared difference is minimized).



Linear Predictive Coding
• The type of digital filter used to model the vocal tract filter in 

LPC (an ‘all pole’ filter) can be expressed as a function of the 
form:

s(n) = − aks(n − k) + Gu(n)
k=1

N

∑

• So an LPC filter is specified by a set of coefficients ak

• The number of coefficients is called the order of the filter and
must be specified prior to analysis.

• Each pair of coefficients defines a resonance of the filter.



All-pole filter
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LPC spectrum
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Practical considerations
What filter order should one use?
• Each pair of LPC coefficients specifies a resonance of the 

filter.
• The resonances of the filter should correspond to the formants 

of the vocal tract shape that generated the speech signal, so the 
number of coefficients we should use depends on the number 
of formants we expect to find.

• The number of formants we expect to find depends on the 
range of frequencies contained in the digitized speech signal -
i.e. half the sampling rate.

• Generally we expect to find ~1 formant per 1000 Hz.
• So a general rule of thumb is to set the filter order to the 

sampling rate in kHz plus 2
• 2 for each expected formant, plus two to account for the 

effects of higher formants and/or the glottal spectrum.



Filter order
• In any case, try a range of filter orders and see what works 

best.
• Problems for this rule of thumb can arise if there are zeroes in

the speech signal. These can be introduced by nasalization, 
laterals, or breathiness.

• If you use too many coefficients, there may be spurious peaks 
in the LPC spectrum, if you use too few, some formants may 
not appear in the LPC spectrum.



LPC: filter order
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Pre-emphasis
• The spectrum of the voicing source falls off steadily as 

frequency increases.
• LPC analysis is trying to model vocal tract filter.
• This is often more successful if the spectral tilt of the glottal 

source is removed before LPC analysis.
• This is achieved by applying a simple high-pass filter (pre-

emphasis):
y(n) = s(n) - ps(n-1)

• where p is between 0 and 1. 
• p = 1 yields the greatest high frequency emphasis. Typical 

values are between 0.9 and 0.98.
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LPC analysis
• LPC analysis is based on a simple source-filter model of 

speech (the vocal tract is a lossless all-pole filter), so it should 
be well-suited to the analysis of speech as long as the 
assumptions of the model are met.

• However we have to specify the filter order, and it may be 
difficult to determine the correct order.

• This is especially problematic where the actual vocal tract 
filter contains zeroes, violating the assumptions of the model.



II. Perceptual cues and the distribution of 
phonological contrasts

• Phonological contrasts generally have restricted 
distributions.

• E.g. Lithuanian voicing contrasts
a. obstruent voicing is distinctive before vocoids and consonantal 
sonorants:

áukle nukniaũti auglingas dregna
silpnas rytmetỹs skobnis bãdmetys

b. obstruent voicing is neutralized (to voiceless) word-finally:
[dauk] [kat]

c.obstruent voicing is neutralized before any obstruent (assimilating in 
voicing to following obstruent):

a[d-g]al mè[z-d]avau dìr[p-t]i dè[k-t]i



II. Perceptual cues and the distribution of 
phonological contrasts

Different contrasts have different characteristic patterns of 
distribution (Steriade 1999):

(i) Obstruent voicing contrasts are permitted only before 
sonorants

(e.g. German, Lithuanian, Russian, Sanskrit).
(ii) Major place contrasts (labial vs. coronal vs. dorsal) are 

permitted only before vowels 
(e.g. Japanese, Luganda, Selayarese).

(iii) Retroflexion contrasts (retroflex vs. apical alveolar) are 
permitted only after vowels 

(e.g. Gooniyandi, Miriwung, Walmatjari).



II. Perceptual cues and the distribution of 
phonological contrasts

Hypothesized explanation: ‘The likelihood that distinctive 
values of the feature F will occur in a given context is a 
function of the relative perceptibility of the F-contrast  in 
that context’ (Steriade 1999).

• Contrasts differ in their distribution of cues so they are 
subject to different patterns of neutralization.

• Obstruent voicing is best cued by Voice Onset Time - only 
realized with a following sonorant.



Steriade (1997) - obstruent voicing
• Markedness of obstruent voicing contrast in 

context C depends on strength of cues to voicing in 
C.

Environment

*αVoice/ V_ [-son]

Cues

clo voi, clo dur

clo voi, clo dur, V1 dur, F0, F1 in V1

clo voi, clo dur, V1 dur, F0, F1 in V1,
burst dur & amp

clo voi, clo dur, V1 dur, F0, F1 in V1,
burst dur & amp, F0, F1 in V2

*αVoice/ [-son] _ [-son], [-son]_#, #_[-son]

*αVoice/ V_ #

*αVoice/ V_ [+son]

>>

>>

>>

>>

Figure by MIT OpenCourseWare. Adapted from Steriade, Donca. “Phonetics in Phonology: The Case of Laryngeal Neutralization.” 
Manuscript, UCLA, 1997. (PDF)   ___

http://www.linguistics.ucla.edu/people/steriade/papers/phoneticsinphonology.pdf


Steriade (1997) - obstruent voicing
• Implicational universals (cf. Lombardi 1991, Wetzels and Mascaro 2001)
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Figure by MIT OpenCourseWare. Adapted from Steriade, Donca. “Phonetics in Phonology: The Case of Laryngeal Neutralization.” Manuscript, UCLA, 1997. (PDF)   ___       

http://www.linguistics.ucla.edu/people/steriade/papers/phoneticsinphonology.pdf
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