MIT, Fall 2003

A most selective history of Binding Theory (Lasnik 1989:19-34)

MIT, 24.951, Fr 12 Sep 2003

Terminology, anaphor vs. pronoun complementarity, c-command, A- vs. A'-binding, locality, "Tensed S Constraint", "Nominative Island Constraint", "R-expressions", etc.

- (1) a. Anaphors:
 - 1. myself, yourself, himself, herself, ...
 - 2. each other, one another, ...
 - 3. traces of A-movement (as in, e.g., $John_i$ was liked t_i)?
 - 4. PRO (as in, e.g., She_i wants to PRO_i to dance)?, . . .
 - b. Pronouns:
 - 1. I, me, you, she, her, he, him, we, ...
 - 2. pro (as in, e.g., Spanish pro_i canto 'I sing')
 - 3. PRO (as in, e.g. PRO_{arb} to try it is PRO_{arb} to like it)?, ...
 - c. R-expressions (names):
 - 1. $John, Mary, \dots$
 - 2. The man that I saw yesterday, That professor
 - 3. traces of wh-movement (as in, e.g., Who_j does she_i like t_j ?)?, ...
- (2) a. $John_i$ likes $himself_{i/*j}$
 - b. $John_i$ likes $him_{i/*i}$
- (3) a. $[John_i]'s mother]_i likes herself_i$
 - b. $*[John_i 's mother]_j likes himself_i$
 - c. *[The mother of $John_i$], likes $himself_i$
- (4) $John_i$'s mother likes him_i
- (5) a. * John, I like himself
 - b. John, I like him

- (6) a. *Nixon; wanted the American people to like himself;
 - b. $Nixon_i$ wanted the American people to like him_i
- (7) a. * $[Schwarzenegger\ and\ Shriver]_i\ expect\ that\ [\ [each\ other]_i\ will\ win\]$
 - b. $[Schwarzenegger \ and \ Shriver]_i \ expect \ [[each \ other]_i \ to \ win]$
- (8) a. $[Schwarzenegger \ and \ Shriver]_i \ expect \ that \ [they_i \ will \ win]$
 - b. * [Schwarzenegger and Shriver]_i expect [them_i to win]
- (9) a. * He_i likes $John_i$
 - b. His_i mother likes John_i
- (10) a. * He_i thinks that Mary likes $John_i$

Binding Theory post-1980

- (11) a. An anaphor is A-bound in some local domain (which?).
 - b. A pronoun is A-free in some local domain (which?).
 - c. An R-expression is free (everywhere?).
- (12) a. α is A-bound by β iff α and β are coindexed, β c-commands α , and β is in a so-called "A position" (a potential argument position? what's that?).
 - b. α is A-free iff it is not A-bound.

"Local domain" in Chomsky 1981 (LGB):

- (13) α is the governing category (GC) for β iff α is the minimal category containing β and a governor of β , where $\alpha = NP$ or S.
- (14) α governs β iff:
 - **a**. α is a potential governor (=Case-assigner?)— $\alpha \in \{V, P, I^0[+tense], D^0[+genitive], \dots \}$
 - b. α m-commands β (i.e., every maximal projection XP that dominates α also dominates β)
 - c. there is no maximal projection XP such that X^0 is a potential governor, XP dominates β and XP does not dominate α (i.e., there is no potential governor that is closer to β than α is).

Problem: The "Specified Subject Condition"

- (15) a. Mary dislikes criticism of herself
 - b. *Mary dislikes Bill's criticism of herself

MIT, Fall 2003

Governing Category refined:

(16) a. α is the governing category (GC) for β if α is the minimal category containing β , a governor of β , and a SUBJECT accessible to β .

```
[SUBJECT \in \{ \text{Spec}(XP) \text{ with } X^0 \text{ a lexical head, AGR in } I^0[+\text{Tense}] \} ]
```

A root sentence is a governing category for a governed element.

- b. α is accessible to β if β is in the c-command domain of α and assignment to β of the index of α would not violate the "i-within-i" condition in (17).
- (17) $*[\gamma \ldots \delta_i \ldots]_i \gamma$ and δ (δ a constituent of γ) bear the same index.
- (18) a. *There is [NP] a picture of $itself_i]_i$ on the mantelpiece
 - b. $*[_{NP} the owner of his_i boat]_i$
- (19) a. * Mary realized that herself, INFL, would win
 - b. Mary realized that [a picture of herself], $INFL_i$ was on sale
- (20) Consider $[IP XP [I' I^0 ...]]$ (How) Does AGR in I^0 become "accessible" to XP in Spec(IP)?

One residual problem (among many others): Cases of non-complementarity between anaphors and pronouns

- (21) a. [The candidates]_i expect that [[each other]_i 's spouses will be supportive]
 b. [The candidates]_i expect that [their_i spouses will be supportive]
- (22) a. [The students]_i are enjoying [each other]_i's participation in this class
 - b. $[The students]_i$ are enjoying their participation in this class

Governing Category in Chomsky 1986 Knowledge of Language

(23) "A governing category is a "complete functional complex" (CFC) in the sense that all grammatical functions compatible with its head are realized within it.... The local domain for an anaphor or pronominal α ... is the least CFC [Complete Functional Complex] containing a lexical governor of α ."

Problem: "Nominative Island Constraint"

- (24) * $John_i$ believes (that) [himself_i is intelligent]
- (25) a. $John_i$ is believed [t_i to be intelligent]
 - b. $*John_i$ is believed (that) $[t_i$ is intelligent]

4 <u>24.951</u>

(26) $Jean\ se_i\ croit\ [t_i\ intelligent]$ (French) John 3sg-REFL believes intelligent "John believes himself intelligent"

Other problem: Are R-expressions really free everywhere?

- (27) $John_i$ is tough $[\mathcal{O}_i [PRO_{arb} \text{ to please } t_i]]$
- (28) An R-expression must be A-free in the domain of the operator that A'-binds it (= in the domain of the head of its maximal chain).