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Presupposition Projection, Trivalence and Relevance1
 

Danny Fox, MIT 


1. Goals 

1 	 To argue that presuppositions project from quantificational sentences according to the 
predictions of certain trivalent theories of projection (see Peters 1979, Beaver and 
Krahmer 2001, George 2008).  

2. 	 To argue for a bivalent method of deriving the trivalent predictions. The method will 
involve a new assertability condition (Relevance, hinted at in Fox 2008).  

The condition will demand that the presupposition of an atomic sentence be met 
to the extent that the atomic sentence is relevant for determining the semantic 
value of the matrix sentence. 

2. Projection from the Nuclear Scope – An Empirical Debate 

(1) 	 Some student [x drives x’s car to school]x has a (unique) car 

(2) 	 No student [x drives x’s car to school]x has a (unique) car 

(3) 	 Every student [x drives x’s car to school]x has a (unique) car 

(4) 	 Competing Empirical Claims: 

Universal Projection (Heim 1983): A quantificational sentence of the form 
Q(A)λxB(x)p(x) presupposes ∀x(A(x)→p(x)) 
Existential Projection (Beaver 1992): A quantificational sentence of the form 
Q(A)λxB(x)p(x) presupposes ∃x(A(x)∧p(x)) 
Nuanced Projection (Peters, George, Chemla): A quantificational sentence of the 
form Q(A)λxB(x)p(x) presupposes different things depending on various properties 
of Q. 

3. Trivalent Predictions (one version of Nuanced Projection) 

(5) 	 Stalnaker’s Bridging Principle: 
A sentence S is assertable given a context set C only if  
∀w∈C [the denotation of S in w is either 0 or 1]. 

1 This work owes on obvious debt to Schlenker’s work on presupposition projection (see Fox 2008). Many 
thanks to Emmanuel Chemla, Paul Egre, Kai von Fintel, Ben George, Irene Heim, Alejandro Pérez 
Carballo, Raj Singh, Benjamin Spector, Steve Yablo, and especially to Alexandre Cremers and Philippe 
Schlenker.  
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(6) Trivalent denotation of the nuclear scope in (1)a,b,c: 

1 if x has a (unique) car and x drives it to school 

λx. 
 0 if x has a (unique) car and x doesn’t drive it to school  

# if x has no car (or more than one car) 

(7) 	 Strong Kleene: 
The denotation of S in w is 
(a) 1 if its denotation (in a bivalent system) would be 1 under every bivalent 

correction of sub-constituents. 
(b) 0 if its denotation would be 0 under every bivalent correction of sub-

constituents. 
(c) # if neither (a) nor (b) hold 

(8) a function g:XÆ{0,1} is a bivalent correction of a function f:XÆ{0,1,#} if 
∀x[(f(x)=0∨f(x)=1)→g(x)=f(x)] 

. 
(1)'	 Some student [x drives x’s car to school]x has a (unique) car 

Presupposes: 
Either [Some student has a car and drives it to school] or  

[Every student has a car (and doesn’t drive it to school)]. 

(2)'	 No student [x drives x’s car to school]x has a (unique) car 
Presupposes: 
Either [Every student has a car (and doesn’t drive it to school)] or 

[Some student has a car and doesn’t drive it to school] or 

(3)'	 Every student [x drives x’s car to school]x has a (unique) car 
Presupposes: 
Either [Every student has a car (and drives it to school)] or 

[Some student has a car and doesn’t drive it to school]. 

4. Conflicting Evidence 

4.1. Simple sentences appear to provide evidence for these nuanced predictions 

(9) 	 At least one of these 10 students [x drives x’s car to school]. 
Leads only to an existential inference 

(10) 	 None of these 10 students [x drives x’s car to school]. 
Leads to a universal inference  

See Chemla (2009) for important experimental data. 
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4.2. Yes/no questions appear to provide counter evidence 

(11) 	 Does one of these 10 students [x drive x’s car to school]. 
Leads to a universal inference  (Schlenker 2009) 

5. An argument for the Trivalent Predictions  

Claim: The trivalent projection is always correct but is usually disguised by the assertion 
or by a particular form of pragmatic strengthening.  

(12) 	QP1 [x drives x’s car to school]x has a (unique) car 
Presupposes: 

 Either [QP2 has a car and (doesn’t) drive it to school] or  
[Every student has a car] (where QP2 can, though need not, be identical to QP1) 

 Equivalently: 

¬[QP2 has a car and (doesn’t) drive it to school] →
 
[Every student has a car] 


Believing this disjunction without believing one of the disjuncts is odd. It suggests that 
there is a connection between the two (if one is false, the other is true). So (as in the 
discussion of proviso to which we will return) this could affect our ability to detect the 
formal presupposition in actual contexts of use.  

5.1. Indicative some 

(1)'	 Some student [x drives x’s car to school]x has a (unique) car 
Presupposes: 
Either [Some student has a car and drives it to school] or  

[Every student has a car] 

It is odd for a speaker to believe the disjunction without believing one of the disjuncts.  

Four scenarios to consider: 

Scenario 1:	 The first disjunct some student has a car and drives it to school is part of 
the common ground, C, at the point of utterance. This could be a 
reasonable context, but probably one in which the sentence is not 
assertable for Stalnakarian reasons (it is a contextual tautology).  

Scenario 2: 	 The second disjunct every student has a car is part of C at the point of 
utterance. This could be a reasonable context, and one in which the 
sentence is assertable. 
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Scenario 3: 	 The disjunction is part of C at the point of utterance, yet neither disjunct 
is. This is an unrealistic scenario. 

Scenario 4: 	 The disjunction is not part of C at the point of utterance. Here 
accommodation is required. By a simple-minded model of accommodation 
(below), accommodation is minimal leading to the C from Scenario 3. If 
this was our last move, we would be left with an unrealistic C. However, 
accommodation is followed by update of the context by the assertion. The 
resulting C now entails the first disjunct (hence realistic). 

Conclusion: there is a scenario (scenario 4) in which the sentence is acceptable without a 
resulting context that entails the universal statement (the second disjunct). Hence, 
speakers do not report a universal inference. 

Presupposed Architecture: 

Assertability Condition: When a sentence S is asserted in a context C it is associated 
with a formal presupposition p. When p is entailed by (the common ground in) C, the 
sentence is assertable. When p is not entailed by C, a repair strategy might come into 
play. 

Accommodation: When p is not entailed by C, it would either be judged as 

unacceptable or C might be modified minimally so that p is satisfied
 

Accommodation (C,p) = C∩p 

I.e. accommodation is always minimal. 

Update: After S is asserted, the context will be updated  
(Update (C, S) = C∩{w: S is true in w} if S is indicative) 

5.2. Indicative no 

(2)'	 No student [x drives x’s car to school]x has a (unique) car 
Presupposes: 
Either [Some student has a car and drives it to school] or  

[Every student has a car] 

It is very odd for a speaker to believe the disjunction without believing one of these 
disjuncts. 

Four scenarios to consider: 

Scenario 1:	 The first disjunct some student has a car and drives it to school is part of 
C at the point of utterance. This could be a reasonable context, but 
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probably one in which the sentence is not assertable for Stalnakarian 
reasons (it is a contextual contradiction).  

Scenario 2: 	 The second disjunct every student has a car is part of C at the point of 
utterance. This could be a reasonable context, and one in which the 
sentence is assertable. 

Scenario 3: 	 The disjunction is part of C at the point of utterance, yet neither disjunct 
is. This is an unrealistic Scenario. 

Scenario 4: 	 The disjunction is not part of C at the point of utterance. Here 
accommodation would be required. By assumption, it is minimal and is 
followed by update of the context by the assertion. In our particular case, 
the resulting C entails the second conjunct. 

Conclusion: Under every scenario in which the sentence is acceptable, the resulting 
context entails the universal statement (the second conjunct). Hence, speakers report a 
universal inference. 

5.3. Indicative every 

(3)'	 Every student [x drives x’s car to school]x has a (unique) car 
Presupposes: 
Either [Some student has a car and doesn’t drive it to school] or  

[Every student has a car] 

Again, it is odd for a speaker to believe the disjunction without believing one of these 
disjuncts. 

Four scenarios to consider: 

Scenario 1:	 The first disjunct some student has a car and doesn’t drive it to school is 
part of C at the point of utterance. This could be a reasonable context, but 
probably one in which the sentence is not assertable for Stalnakarian 
reasons (it is a contextual contradiction).  

Scenario 2: 	 The second disjunct every student has a car is part of C at the point of 
utterance. This could be a reasonable context, and one in which the 
sentence is assertable. 

Scenario 3: 	 The disjunction is part of C at the point of utterance, yet neither disjunct 
is. This is an unrealistic scenario. 

Scenario 4: 	 The disjunction is not part of C at the point of utterance. Here 
accommodation would be required. By assumption, it is minimal and is 
followed by update of the context by the assertion. In our particular case, 
the resulting context entails the second disjunct. 

Conclusion: Under every scenario in which the sentence is acceptable, the resulting 
context entails the universal statement (the second conjunct). Hence, speakers report a 
universal inference. 
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5.4. Negated Universals 

Reveal that a universal presupposition is wrong for universal statements: 

(13) 	 A: There are many students around, hence many cars.  
B: No, half of the students don’t have a car. 

    Furthermore, some don’t drive their car to school. 

    Furthermore, not every student drives his car to school. 

# Furthermore, every student leaves his car at home 

5.5. Questions 

(14) 	 Does one of these 10 students [x drive x’s car to school]. 
Presupposes: 
Either [Some student has a car and drives it to school] or  

[Every student has a car] 

Scenario 1:	 The first disjunct some student has a car and drives it to school is part of 
C at the point of utterance. This could be a reasonable context, but 
probably one in which the question is not assertable (the answer is already 
part of the common ground).  

Scenario 2: 	 The second disjunct every student has a car is part of C at the point of 
utterance. This could be a reasonable context, and one in which the 
question is assertable. 

Scenario 3: 	 The disjunction is part of C at the point of utterance, yet neither disjunct 
is. This is an unrealistic Scenario. 

Scenario 4: 	 The disjunction is not part of C at the point of utterance. Here 
accommodation would be required. By assumption, it is minimal and is 
followed by update of the context by the question. In this particular case (a 
question not an assertion), the resulting common ground is not affected. 
Since it is the unrealistic common ground from Scenario 3, we’re in 
trouble (unless we have a method of strengthening presuppositions).2 

Conclusion: Under every scenario in which the sentence is acceptable, the resulting 
context entails the universal statement (the second disjunct). Hence, speakers report a 
universal inference. 

Prediction: A yes/no question will reveal weaker presuppositions if we make it plausible 
to believe the disjunction without believing one of the disjuncts. 

2 There are well known challenges for this line of reasoning that we will bring up in section 7 and attempt 
to address in section 12. 
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(15) 	 John and Bill meet for a game of poker. The rules they set for their engagement 
are the following. They each give Jane 100 dollar and get chips in return. The 
game will continue until one of them has no more chips left. The moment this 
happens, the winner (the player that has 200 chips) goes to Jane and cashes his 
chips. 

Fred (who knows the rules of engagement) is responsible for cleaning the room 
the moment the game is over. He calls Jane and asks one of the following 
questions: 

Did one of the two players cash his chips? 

(16) 	 Did anyone of these bankers acquire his fortune by wiping out one of the others? 
Presupposition: if none of these bankers acquired his fortune by wiping out one of 
the others, they all have a fortune. 

Confound (Ben George p.c.): nominals can receive temporal interpretations independent 
of tense, Hence it is not clear that a universal presupposition will be wrong here.  

Can be addressed by explicating the temporal interpretation of the nominal:  

(17) 	 Did anyone of these bankers acquire the fortune he deposited in the bank last 
week by wiping out one of the others? 
Presupposition: if no banker acquired the fortune he deposited in the bank last 
week by wiping out one of the others, they each deposited a fortune last week.  

Likewise for (15): 

(18) 	 Is any one of the two players allowed to cash the chips that he now has in his 
possession?  

6. Charlow’s Challenge 

(19) 	 Just five of these 100 boys smoke. They all smoke Nelson 
#Unfortunately, some/at least two of these 100 boys also smoke MarlboroF. 

Charlow’s Conclusion: also is a “strong trigger” and reveals the true projection properties 
which are universal. 

6.1. Conflicting Data. 

(20) 	 More than 80% of the boys went to the party. 
More than 40% of the boys also had a drink. 

Available reading: 
More than 40% of the boys (including those which didn’t go to the party)… 
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(21) 	 More than 50% of Americans think that Obama is bad for America. 
More than 40% of Americans also think that he’s a Muslim. 

(22) 	 More than 80% of the boys went to the party. 
Luckily, fewer than 50% of the boys also had a drink. 

(23) 	 Imagine the following rather stupid game. Four players are each handed a card, 
and what happens next depends on whether or not one of the players gets an ace.  
First possibility: No player gets an ace → Every player gets a cookie. 

Second possibility: one or more player gets an ace → the player or players that 
get an ace get a cookie and a million dollars. No one else gets anything 
So it is clear that some or all players will get a cookie.  

The only reason anyone would watch the game is to find out whether 
someone also gets the million dollars. 

6.2. Goal 

To understand what distinguishes Charlow’s examples from those discussed above. 

Tentative Suggestion based on Magri (2009): A sentence ϕ is “odd” when it is 
contextually equivalent to a scalar alternative ϕ' which is logically stronger than ϕ. 

(24) 	 Just five of these 100 boys smoke. They all smoke Nelson 
ϕ:#Unfortunately, some of these 100 boys also smokes MarlboroF. 
ϕ': Unfortunately, some of these 5 boys also smokes MarlboroF. 

7. Problems for the Trivalent Setup 

7.1. The Proviso Problem 

The type of explanation we gave for the presuppositions of questions (4.5.) is familiar 
from Karttunen and Heim, and much subsequent work.  

(25) 	 a. If John is a scuba diver, he will bring his wet suit. 
Appears to presuppose: If John is a scuba diver, he has a wet suit. 

b. 	 If John flies to London, his sister will pick him up. 

Appears to presuppose: John has a sister. 


The Heim/Karttunen claim: Both sentences in (25) have a conditional presupposition. It 
is not plausible to believe the conditional If John flies to London, he has a sister without 
believing that he has a sister. Hence, one would tend to infer that John has a sister.  



 
 

 
 

 
 

 

 

 

 
 

 

 

 

 

 

 

 

24.954, Spring 2010 
Fox 

Criticism by Geurts (1997): By parity of reasoning, we would expect the presupposition 
of (26) to be strengthened, but it isn’t. 

(26) Bill knows that if John flies to London, he has a sister. 

Conclusion reached by Singh (2008, 2010) and Schlenker (2010): if we want a 
mechanism that strengthens presuppositions, we need to say something that would predict 
when strengthening is possible. 

The trivalent system would have to face the same challenge: 

(27) Bill knows that either some student drives his car to school or every student has a 
car. 

7.2. Presupposition of non truth denoting expressions 

The trivalent system might work for describing presupposition projection in indicative 
sentences which have a truth value. But how do we extend it to deal with the 
presupposition of non indicative sentences, e.g. questions? (Thanks to A. Cremers) 

My Goal for the remainder: to develop a new way of deriving the trivalent predictions 
in a bivalent system with the aid of an assertability condition (a modification of 
Stalanker’s bridging principle). My condition (as we will see) is very much inspired by 
Schlenker’s work. 

The condition will have two advantages over the trivalent system: 

a. 	 It will not care what type of denotation a matrix sentence has and thus would 
have predictions for non-indicative sentences. 

b. 	 It will be possible to account for presupposition strengthening (of the sort we 
assumed for questions) based on recent thinking about the Proviso Problem. 

8. The setup 

First Ingredient: No projection beyond atomic sentences 
Certain lexical items will have a two dimensional entry. Consequently, the S nodes 
immediately above them will have a two dimensional representation (one dimension 
is the “assertion” and the other the “presupposition”, but, as we will see, the 
terminology is a bit misleading). In such cases we will write S as Sp, where p 
expresses the presupposition (possibly assignment dependent). There will be no 
partiality (or trivalence). (We will assume that the S part entails p but this is not 
crucial). Furthermore, there will be no rule of projection for p beyond Sp. That is, the 
semantics is classical (i.e. works as if p was not there).  
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Second Ingredient: An assertability condition 
Presuppositions of complex sentences will be predicted (following Schlenker) by a 
pragmatic condition on an utterance of a sentence ϕ that has Sp as a constituent. The 
condition, again following Schlenker, will have a global version (that will have no 
left right asymmetry) that we will then incrementalize (to derive the asymmetries).  

However, the pragmatic condition will be different from Schlenker’s. It will bear 
some resemblance to Stalnaker’s bridging principle in (5).  

Let’s start with the “propositional case” in which Sp has no free variables in it (which are 
not in the domain of the contextually given assignment function). 

9. The Propositional Case 

9.1. The Global Version 

Let ϕ(Sp) be a sentence dominating (or identical to) Sp. 

(28) 	 ϕ(Sp) is assertable in C only if 
∀w∈C: Relevant(Sp, ϕ(Sp), w) → p is true in w.3 

(29) 	Rel(Sp, ϕ(Sp), w) ⇔def (([[ϕ(T)]]w ≠ [[ϕ(⊥)]]w) 
Where [[T]] w = 1 for all w and [[⊥]]w = 0 for all w 

9.1.1. Negation 

ϕ(Sp): ¬Sp
 

∀w ∀S: Rel(S,¬S, w). 


Hence, ¬Sp is assertable in C, by (28), only if ∀w∈C: p is true in w. 


9.1.2. Symmetric theory of disjunction, conjunction 

ϕ(Sp): S1∨Sp 

∀w∈C: S1 is false in w → Rel(Sp, ϕ(Sp), w). 
∀w∈C: S1 is true in w →¬Rel(Sp, ϕ(Sp), w). 

Hence S1∨Sp is assertable in C, by (28), only if 
∀w∈C: S1 is false in w → p is true in w. 

3 ‘Rel(S, ϕ(S), w)’ should be read as the value of S is relevant for the value of ϕ in w. 
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ϕ(Sp): S1∧Sp 

∀w∈C: S1 is true in w → Rel(Sp, ϕ(Sp), w) 
∀w∈C: S1 is false in w →¬Rel(Sp, ϕ(Sp), w) 

Hence S1∧Sp is assertable in C, by (28), only if 
∀w∈C: S1 is true in w → p is true in w. 

9.1.3. (Material-)Conditionals 

ϕ(Sp): S1 → Sp 

∀w∈C: S1 is true in w → Rel(Sp, ϕ(Sp), w) 
∀w∈C: S1 is false in w →¬Rel(Sp, ϕ(Sp), w) 

Hence S1→Sp is assertable in C, by (28), only if 
∀w∈C: S1 is true in w → p is true in w. 

9.2. The Incremental Version 

(30) ϕ(Sp) is assertable in C only if 
∀w∈C: Relinc (Sp, ϕ(Sp), w) →  p is true in w. 

(31) Relinc (Sp, ϕ(Sp), w) ⇔def ∃ϕ'∈GOOD-FINAL(S, ϕ) s.t. Rel(Sp, ϕ'(Sp), w) 

(32) GOOD-FINAL(S, ϕ) = 
{ϕ': ϕ' can be derived from ϕ by replacing constituents in ϕ that follow S} 

For more general statements, see Appendix A 

10. Generalizing to an Extensional System with one Free Variable 

Again, we will start with a global version which can then be incrementalized 

(33) 	 Let ϕ(S(x)p(x)) be a sentence that dominates S(x)p(x) where x is a variable of type 
α, the single to-be-bound-variable in S(x)p(x) (i.e. a variable free in Sp and bound in ϕ). 

ϕ is assertable in C only if 
∀w∈C ∀a∈Dα [Rel(S(x)p(x), ϕ(S(x)p(x)), w, a) → [[p(x)]]w,x→a  =1)]4 

(34) 	Rel(S(x)p(x), ϕ(S(x)p(x)), w, a) ⇔def ∃Ta, Fa 

a. 〈Ta,Fa〉 is a-differing-extension of S(x)p(x) (an a-DE of S(x)p(x)) 
b. [[ϕ(Ta)]]w,g ≠ [[ϕ(Fa)]]w,g 

4 ‘Rel(S(x), ϕ(S(x)), w, a)’ should be read as the value of S(x) is relevant for the value of ϕ in w given an 
individual a (or under an assignment function g, s.t. g(x)=a). 
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(35) 	 〈Ta,Fa〉 is an a-DE of S(x)p(x) ⇔def 

∀w [[  Ta]]w,x→a  =1 & [[  Fa]]w,x→a  =0 & 
∀α≠a [([[  Ta]]w,x→α  = [[  Fa]]w, x→α) & [([[ p(x)]] w,x→α =1)→ ([[  Ta]]w,x→α  = [[  S]] w, x→α)]] 

Equivalently: 

(35)' 〈Ta,Fa〉 is an a-DE of S(x)p(x) ⇔def 

∃ψ∃Ta∃Fa 

∀α≠a [([[  p(x)]] w,x→α =1)→ ([[  ψ]]w,x→α  = [[  S]] w, x→α)] & 
Ta =[x=a ∨ ψ] and Fa =[x≠a ∧ ψ] 

Below we state results without proofs. For proofs, see appendix B: 

10.1. Binding by an expression of type e 

(36) 	 ϕ: John λx [x likes x’s mother]x has a (unique) mother 
Sp (=[x likes x’s mother]x has a (unique) mother) 

∀w∀a[Rel(Sp, ϕ, w, a) ↔ a=John] 


Hence (36) presupposes that John has a unique mother.  


10.2. 	Quantification 

ϕ: Every(NP)(λx (S(x)p(x)) 

Claim: ∀w∈C∀a∈De: 
Rel(S(x)p(x), ϕ, w, a ) ↔ 
a ∈ [[NP]]  w & ¬∃b≠a:b∈[[NP]]  w& [[  p(x) ]]  w, x→b = 1 & [[S(x)p(x) ]]w, x→b= 0 

Hence Every(NP)(λx (S(x)p(x)) presupposes that p holds of every member of the 
denotation of NP (the domain) or that there is one member of the domain of which p is 
true and Sis false. 

I.e., if the sentence is not false, then p must hold of every member of the domain. 

ϕ: Some(NP)(λx (S(x)p(x)) 

Claim: ∀w∈C∀a∈De: 
Rel(S(x)p(x), ϕ, w, a ) ↔ 
a ∈ [[NP]]  w and ¬∃x≠a:x∈[[NP]]  w &  [[ p(x)] ] w, 1→x= 1& [[S(x)p(x) ] ]w, 1→x= 1 
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Hence Some(NP)(λx (S(x)p(x)) presupposes that p holds of every member of the NP 
domain or that there is one member of the domain of which p holds and [[λxS(x)p(x)]] 
holds as well. 

11. Incremental Version 

(37) 	Let ϕ(S(x)p(x)) be a sentence that dominates S(x)p(x) where x is a variable of 
type α, the single to-be-bound-variable in S(x)p(x) (i.e. a variable free in Sp 
and bound in ϕ). 

ϕ is assertable in C only if 

∀w∈C ∀a∈Dα [Relinc(S (x)p(x), ϕ, w, a)→ [[p(x)]] w,x→a  =1] 


(38) 	a. Relinc(S, ϕ(S), w, a) ⇔def 

∃ϕ'∈ GOOD-FINAL(S, ϕ) s.t., Rel(S, ϕ'(S), w, a)  

More Radical Incrementalization 

(39) 	Relr-inc(S, ϕ(S), w, a) ⇔def ∃S' s.t. Relinc(S', ϕ(S'), w, a)   

(40) 	 ϕ is assertable in C only if 
∀w∈C ∀a∈Dα [Relr-inc(S (x)p(x), ϕ, w, a)→ [[p(x)]] w,x→a  =1] 

More constituents will be r-incrementally relevant than those that are incrementally 
relevant (which are in turn more than those that are globally relevant). Hence, the more 
we incrementalize the stronger the presuppositions. 

In particular, (40) will give us the Heim/Schlenker predictions (see appendix C). 

12. Proviso and Formal Alternatives 

Schlenker’s (2010) solution to the proviso problem: the set of possible strengthening of 
the presupposition of a sentence ϕ come from various forms of radical 
incrementalization, in particular by treating all sorts of constituents that do not follow the 
relevant presupposition trigger, as if they followed the trigger. 

Since we get the classical (Heim/Schlenker) predictions by considering substitutions of 
the nuclear scope (which does not follow the trigger), we understand why the 
Heim/Schlenker presuppositions are possible strengthenings of the trivalent 
presuppositions. 
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13. Generalizing to an extensional system with any number of free variables 

The global version 

(41) 	Let ϕ(S([xi])p([xi])) be a sentence that dominates S([xi])p([xi]) where x1…xn are all the to-be­
bound-variable in S([xi])p([xi]). 

ϕ is assertable in C only if 

∀w∈C ∀[ai] Rel(S([xi])p([xi]), ϕ, w, [ai]) → [[p([xi])]]w,[xi] →[ai]  =1) 


(42) 	Rel(S([xi])p([xi]), ϕ, w, [ai]) ⇔def 

∃〈T[ai],F[ai]〉 s.t. 〈T[ai],F[ai]〉 is an [ai]-DE of S([xi]) p([xi]) and 

[[ϕ(T[ai]))]]w,g ≠ [[ϕ(F[ai]))]]w,g 


(43) 	 〈T[ai],F[ai]〉 is an a-DE of S([xi]) p([xi]) ⇔def 

∀w 
a. ∀x≠ [ai]:[[T[ai]]]w, [xi]→[ai] =[[F[ai]]]w, [xi]→[ai]

 b. ∀x≠ [ai]:[[p([xi])]]w, [xi]→[ai] =1 →  [[T[ai]]]w, [xi]→[ai] =[[S([xi])]]w, [xi]→[ai]

 c. T[ai]([ai])=1 and F[ai]([ai])=0 

Equivalently: 
(44) 	 〈T[ai],F[ai]〉 is an a-DE of S([xi]) p([xi]) if ∃ψ
 a. ∀x≠ [ai]:[[p([xi])]]w, [xi]→[ai] =1 →  [[ψ]]w, [xi]→[ai] =[[S([xi])]]w, [xi]→[ai]

 b. T[ai] = ([xi]=[ai] ∨ ψ) 
c. F[ai] = ([xi]≠[ai] ∧ ψ) 

The incremental version 
As above 

14. Generalizing to an intensional system with any number of free variables 

The lazy thing to do at this stage it to assume that world variables are always represented in the 
syntax and to hope that this reduces to what we have in section 13. 

Do we get the right predictions? 

In particular, how do intensional operators project? 

The predictions here seem different from what is stated by Kartunnen (1973, 1974) and Heim 
(1992). So I have serious homework to do. 

Possibly relevant: 

(45) 	 a. I think it’s possible that John has a job. But it’s also possible that his job pays very 
little. 

b. I think it’s possible that John has a job. But I’m not certain his job pays that much. 
c. #I think it’s possible that John has a job. But I’m certain his job pays very little. 
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(46) a. I think it’s possible that John has a job. And it’s possible that his wife has a job, as 
well. 

b. I think it’s possible that John has a job. But I’m not certain his wife has a job, as well. 
c. #I think it’s possible that John has a job. And I’m certain his wife has a job as well. 

15. Problem from Infinite Domains 

(47) 	 An infinite number of boys drove their car to school. 
[ϕ An infinite number of boys [S(x) x drove x’s car to school]x has a unique car] 

∀w∈C ¬∃a∈De (Rel(S(x), ϕ, w, a)). 
Hence the sentence should presuppose nothing. 

Revision: 

(48) 	Let ϕ(S(x)p(x)) be a sentence that dominates S(x)p(x) where x is a variable of type α, the 
single to-be-bound-variable in S(x)p(x) 

ϕ is assertable in C only if 
∀w∈C ∀A⊆Dα S(x)p(x)  RelSUB-SET (S(x), ϕ, w, A) → ∃A'⊆A(∀a∈A'[[p(x)]]w,x→a =1)5 

Equivalently: ϕ is assertable in C only if 

∀w∈C ∀A⊆Dα S(x)p(x)  RelSUB-SET (S(x), ϕ, w, A) → ∃a∈A([[p(x)]]w,x→a =1) 


(49) 	RelSUB-SET (S(x), ϕ, w, A) ⇔def 

∃TA, FA 

a. 〈TA,FA〉 is an A-differing-extension of S(x)p(x) (an A-DE of S(x)p(x)) 
b.  [[ϕ(TA)]]w,g ≠ [[ϕ(FA)]]w,g 

(50) 	 〈TA,FA〉 is an A-DE of S(x)p(x) if 
∀w ∀a∈A[[TA]]w,x→a =1 & [[Fa]]w,x→a =0 & 
∀α∉A [([[Ta]]w,x→α = [[Fa]]w, x→α) & 
[([[p(x)]]w,x→α=1)→ ([[Ta]]w,x→α = [[S]]w, x→α)]] 

Note: this assertability condition is stronger than what we had previously since: 

a. ∀S,ϕ,w,a[Rel(S(x), ϕ, w, a) → RelSUB-SET (S(x), ϕ, w, {a})] 
b. If |A|=∞ ∃S,ϕ,w [RelSUB-SET (S(x), ϕ, w, A) &∀a∈A¬Rel (S(x), ϕ, w, a)] 

5  ‘RelSUB-SET(S(x), ϕ(S(x)), w, A)’ should be read as the value of S(x) is relevant for the value of ϕ in w for 
some subset of A. 
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Appendices 

A. More General Statements (for the propositional case of section 9) 

Compositionality of Relevance (R-compositionality): Let ϕ(S(A)) be a sentence that 
dominates S which, in turn, dominates A.  

a. 	 If A is (inc-)relevant for the value of S in w, and S is (inc-)relevant for the 
value of ϕ in w, then A is (inc-)relevant for the value of ϕ in w. 

b. 	 If A is not (inc-)relevant for the value of S in w, A is not (inc-)relevant for the 
value of ϕ in w. 

c. 	 If S is not (inc-)relevant for the value of ϕ in w, A is not (inc-)relevant for the 
value of ϕ in w. 

Proof: trivial.  

Terminology: 

If a sentence ϕ obeys the incremental assertability condition in (30) in every context that 
entails p and fails to obey the condition in every context that does not entail p, we will 
say that ϕ presupposes p. It will turn that for every sentence ϕ, there is a unique 
proposition that ϕ presupposes. Hence we can write Presup(ϕ) for this unique 
presupposition. 

In the proofs below, we assume for simplicity that (30) is an iff condition.  (It is easy to 
restate the proofs without this assumption.) 

A.1. Negation 

Claim: Presup(¬ϕ) = Presup(ϕ) 

Proof: 
Let C be a context that does not entail Presup(ϕ) 
Let w∈C be a world s.t. Presup(ϕ)(w)=0.  
ϕ is not assertable in any C, s.t. w∈C.  
∃Sp dominated by ϕ, s.t. Sp is inc-relevant for ϕ in w and p(w)=0. 
Sp is inc-relevant for ¬ϕ in w. 

Hence ¬ϕ is unassertable in C. 

by definition 
by (30) 
ϕ is always relevant 
for ¬ϕ + R­
compositionality 

Let C be a context that does entail Presup(ϕ) 

∀w∈C: Presup(ϕ)(w)=1. 

ϕ is assertable in C. by definition
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¬∃w∈C, Sp dominated by ϕ, s.t. Sp is inc-relevant for ϕ in w and p(w)=0. by (30) 
¬∃w∈C , Sp dominated by ¬ϕ, s.t. Sp is inc-relevant for ¬ϕ in w and p(w)=0. 

Hence ¬ϕ is assertable in C. 
Hence: Presup(¬ϕ) = Presup(ϕ) 

R-compositionality 

A.2. disjunction 

Presup(ϕ∨ψ) = Presup(ϕ)∧(¬ϕ→Presup(ψ)) 

Proof: 
Let C be a context that does not entail Presup(ϕ)∧(¬ϕ→Presup(ψ)). 
Let w∈C be a world in which Presup(ϕ)∧(¬ϕ→Presup(ψ)) is false.   

First Possibility -- Presup(ϕ) is false in w:  
∃Sp dominated by ϕ, s.t. Sp is inc-relevant for ϕ in w and p(w)=0. 
Sp is incrementally relevant for ϕ ∨ ψ in w. 

Hence ϕ∨ψ is not assertable in C 

by (30) 

choose contradiction 
for ψ 

by (30). 

Second Possitivlity -- (¬ϕ→Presup(ψ)) is false in :,  
¬ϕ is true in w and Presup(ψ) is false in w. 
Since ¬ϕ is true in w, ψ is relevant for the truth value of ϕ ∨ ψ 
and the rest is just as above 

by (30) 

Hence ϕ∨ψ is not assertable in C 

Under both possibilities ϕ∨ψ is unassertable in C. 

Let C be a context that entails Presup(ϕ)∧(¬ϕ→Presup(ψ)). 

∀w∈C: Presup(ϕ)(w)=1. 

ϕ is assertable in C. by definition
 

¬∃w∈C, Sp dominated by ϕ, s.t. Sp is inc-relevant for ϕ in w and p(w)=0. by (30)
 
¬∃w∈C , Sp dominated by ϕ, s.t. Sp is inc-relevant for ϕ∨ψ in w and p(w)=0. 


R-compositionality 

∀w∈C 
if ϕ(w) = 1, ψ is irrelevant for the value of ϕ∨ψ, and so is any Sp dominated by ψ 

R-compositionality 

if ϕ(w) = 0, then Presup(ψ)(w)=1  C ⇒ ¬ϕ→Presup(ψ) 

So, there will be no Sp dominated by ψ, which is both inc. relevant for ψ and p(w)=0. 
Hence: 
¬∃w∈C , Sp dominated by ψ, s.t. Sp is inc-relevant for ϕ∨ψ in w and p(w)=0. 

R-compositionality 
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Hence 
¬∃w∈C , Sp dominated by ϕ∨ψ, s.t. Sp is inc-relevant for ϕ∨ψ in w and p(w)=0. 
Hence, ϕ∨ψ is assertable in C. 

Hence: Presup(ϕ∨ψ) = Presup(ϕ)∧(¬ϕ→Presup(ψ)) 

A.3… 

B. Missing Proofs from section 10 

B.1. Binding by an expression of type e 

(51) 	 ϕ: John λx [x likes x’s mother]x has a (unique) mother 
S(x)p(x) (=[x likes x’s mother]x has a (unique) mother) 

∀w∀a[Rel(S(x)p(x), ϕ, w, a) ↔ a=John] 

Proof (trivial): 

Rel(S(x)p(x), ϕ, w, a) ↔ by definition of relevance
 

∃〈Ta,Fa〉 an a-DE of S(x)p(x) s.t.
 
[[John λxTa]]w≠ [[John λxFa]] ↔ by lambda conversion
 

∃〈Ta,Fa〉…[[  Ta]]w,x→John≠ [[Fa]]w,x→John	 ↔ by definition of a-DE 

a = John 

Hence (36) presupposes that John has a unique mother. 

B.2. Quantification 

ϕ: Every(NP)(λx (S(x)p(x)) 

Claim: 

∀w∈C∀a∈De: 

Rel(S(x)p(x), ϕ, w, a ) ↔ 

a ∈ [[NP]]  w & ¬∃b≠a:b∈[[NP]]  w& [[  p(x) ]]  w, x→b = 1 & [[S(x)p(x) ]]w, x→b= 0 

Proof: 

Rel(S(x)p(x), ϕ, w, a ) ↔ by definition of relevance
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∃〈Ta,Fa〉 an a-DE of S(x)p(x) s.t.
 
[[every NP 1Ta]]w≠ [[every NP 1Fa]]w ↔ lambda conversion + the observation that Fa ⊂Ta 


∃〈Ta,Fa〉 an a-DE of S(x)p(x) s.t.

 [[NP]]w ⊆[[Ta]]w,x→a ∧ ¬([[NP]]w ⊆[[Fa]]w,x→a ) ↔ [[Ta]]w,x→a \ [Fa]]w,x→a = {a} 


a ∈[[NP]]w & ∃〈Ta,Fa〉 ∀b≠a[ b∈[[NP]]w → (x∈[[Ta]]w,x→b )] 
↔	 by definition of a-DE 

a ∈[[NP]]w & ∀b≠a[ b ∈ [[NP]]w → ([[p(x)]]w, x→b=0 or [[S(x)p(x)]]w, x→b=1]] 

↔	 replace ∀ with ¬∃¬ 
and let negation migrate rightwards 

a ∈[[NP]]w & ¬∃b≠a:b∈[[NP]]w& [[p]]w, x→b=1& [[S(x)p(x) ] ]w, x→b= 0 

Hence Every(NP)(λx (S(x)p(x)) presupposes that p holds of every member of the 
denotation of NP (the domain) or that there is one member of the domain of which p is 
true and Sis false. 

I.e., if the sentence is not false, then p must hold of every member of the domain. 

ϕ: Some(NP)(λx (S(x)p(x)) 

Claim: 

∀w∈C∀a∈De: Rel(S(x)p(x), ϕ, w, a ) ↔ 

a ∈ [[NP]]w and 
¬∃x≠a:x∈[[NP]]w& [[p(x)] ]w, 1→x= 1& [[S(x)p(x) ] ]w, 1→x= 1 


Proof: 

Rel(S(x)p(x), ϕ, w, a ) ↔ by definition of relevance
 

∃〈Ta,Fa〉 an a-DE of S(x)p(x) s.t.
 
[[some NP λxTa]]w≠ [[some NP λxFa]]w ↔ lambda conversion + the observation that Fa ⊂Ta 


∅≠[[NP]]w ∩[[Ta]]w,x→a & ∅=[[NP]]w ∩[[Fa]]w,x→a ↔ [[Ta]]w,x→a \ [Fa]]w,x→a = {a} 

a ∈[[NP]]w & ∃〈Ta,Fa〉 ∀b≠a[ b∈[[NP]]w → (b∉[[Ta]]w,x→b  )] 
↔	 by definition of a-DE 

a ∈[[NP]]w & ∀b≠a[ b ∈ [[NP]]w → ([[p(b)]]w, x→b=0 or [[S(x)p(x)]]w, x→b=0]] 



 
 

 
 
          

      
 
 

   

 
 

 

 
 

 

 
 

 
  

  
  

        
      

 
 

  
      
 

 
 

 
 

  
 

 

24.954, Spring 2010 
Fox 

↔	 replace ∀ with ¬∃¬ 
and let negation migrate rightwards 

a ∈[[NP]]w & ¬∃b≠a:b∈[[NP]]w& [[p]]w, x→b=1& [[S(x)p(x) ] ]w, x→b= 1 

Hence Some(NP)(λx (S(x)p(x)) presupposes that p holds of every member of the NP 
domain or that there is one member of the domain of which p holds and [[λxS(x)p(x)]] 
holds as well. 

C. Understanding the consequences of r-incrementalization 

To get the Heim/Schlenker Generalization, we will strengthen the assertability condition 
by weakening our global notion of relevance to what we call potential-relevance (Relp). It 
will be easy to see that what we said in section 11 is correct: the incrementalization of 
Relp will be equivalent to the r-incrementalization of our earlier notion Rel. 

(52) 	Let ϕ(S(x)p(x)) be a sentence that dominates S(x)p(x) where x is a variable of 
type α, the single to-be-bound variable in S(x)p(x) (i.e. a variable free in Sp 
and bound in ϕ). 

ϕ is assertable in C only if 
∀w∈C ∀a∈Dα (Relp(S(x)p(x), ϕ(S(x)p(x)), w, a) → [[p(x)]]w,x→a  =1) 

(53) 	Relp(S(x)p(x), ϕ(S(x)p(x)), w, a) ⇔def 

∃Ta, Fa 

a. [[Ta]]w,x→a  =1 & [[Fa]]w,x→a =0 & ∀α≠a ([[Ta]]w,x→α  = [[Fa]]w, x→α) and 
b. [[ϕ(Ta)]]w,g ≠ [[ϕ(Fa)]]w,g 

Equivalently: 

(53)' Relp(S(x)p(x), ϕ(S(x)p(x)), w, a) ⇔def
 

∃ψ∃Ta∃Fa

 a. Ta =[x=a ∨ ψ] and Fa =[x≠a ∧ ψ] 
b. [[ϕ(Ta)]]w ≠ [[ϕ(Fa)]]w 

C.1. Binding by an expression of type e 

(54) 	 ϕ: John λx [x likes x’s mother]x has a (unique) mother 
S(x)p(x) (=[x likes x’s mother]x has a (unique) mother) 

For every w: 

Relp (S(x)p(x), ϕ, a, w) ↔ a=John. 

Proof (trivial): 
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Relp (S(x)p(x), ϕ, a, w) ↔ by definition of p-relevance 

∃Ta,Fa [[Ta]]w,x→a  =1 & [[  Fa]]w,x→a  =0 & ∀α≠a ([[  Ta]]w,x→α  = [[  Fa]]w, x→α) & 

[[John λxTa]]w≠ [[John λxFa]] ↔ by lambda conversion
 

∃Ta,Fa [[Ta]]w,x→a  =1 & [[  Fa]]w,x→a  =0 & ∀α≠a ([[  Ta]]w,x→α  = [[  Fa]]w, x→α) & 

[[Ta]]w,x→John≠ [[Fa]]w,x→John ⇔
 

a = John 

Hence (54) presupposes that John has a unique mother. 

C.2. Quantification 

ϕ: Every(NP)(x (S(x)p(x)) 

Claim:
 

∀w∈C∀a∈De: 


Relp (S(x)p(x), ϕ, a, w) ⇔ a ∈ [[NP]]  w
 

Proof: 

Relp (S(x)p(x), ϕ, a,  w)  ↔ by definition of p-relevance 

∃Ta,Fa [[Ta]]w,x→a  =1 & [[  Fa]]w,x→a  =0 & ∀α≠a ([[  Ta]]w,x→α  = [[  Fa]]w, x→α) & 

[[every NP λxTa]]w ≠ [[  every NP λxFa]]w ↔ lambda conversion + the observation that Fa ⊂Ta 


∃Ta,Fa [[Ta]]w,x→a  =1 & [[  Fa]]w,x→a  =0 & ∀α≠a ([[  Ta]]w,x→α  = [[  Fa]]w, x→α) & 

[[NP]]  w ⊆[[Ta]]w,x→a ∧ ¬([[  NP]]  w ⊆[[Fa]]w,x→a ) ↔
 

a ∈ [[NP]]  w 

Hence Every(NP)(λx(S(x)p(x)) presupposes that p holds of every member of the denotation 
of NP 

ϕ: Some(NP)(λx (S(x)p(x)) 

Claim:
 

∀w∈C∀a∈De: 


Relp (S(x)p(x), ϕ, a, w) ↔ a ∈ [[NP]]  w
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Proof: 
Relp (S(x)p(x), ϕ, a, w) ↔ by definition of p-relevance 

∃Ta,Fa [[Ta]]w,x→a  =1 & [[  Fa]]w,x→a  =0 & ∀α≠a ([[  Ta]]w,x→α  = [[  Fa]]w, x→α) & 

[[ some NP λxTa]]w ≠ [[some NP λxFa]]w ↔ lambda conversion + the observation that Fa ⊂Ta
 

∃Ta,Fa [[Ta]]w,x→a  =1 & [[  Fa]]w,x→a  =0 & ∀α≠a ([[  Ta]]w,x→α  = [[  Fa]]w, x→α) & 

[[NP]]  w ∩[[Ta]]w,x→a ≠ ∅ and [[  NP]]  w ∩[[Fa]]w,x→a = ∅ ↔
 

a ∈ [[NP]]  w 

Hence Some(NP)(λx(S(x)p(x)) presupposes that p holds of every member of the NP 
domain. 

D. More General Statement (for a language with variables) 

Hopefully some other time 
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