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1 Introduction

This document is intended to outline an important aspect of the mechanical response of polymers
and polymer-matrix composites: the field of linear viscoelasticity. The topics included here are
aimed at providing an instructional introduction to this large and elegant subject, and should
not be taken as a thorough or comprehensive treatment. The references appearing either as
footnotes to the text or listed separately at the end of the notes should be consulted for more
thorough coverage.

Viscoelastic response is often used as a probe in polymer science, since it is sensitive to
the material’s chemistry and microstructure. The concepts and techniques presented here are
important for this purpose, but the principal objective of this document is to demonstrate how
linear viscoelasticity can be incorporated into the general theory of mechanics of materials, so
that structures containing viscoelastic components can be designed and analyzed.

While not all polymers are viscoelastic to any important practical extent, and even fewer
are linearly viscoelastic1, this theory provides a usable engineering approximation for many
applications in polymer and composites engineering. Even in instances requiring more elaborate
treatments, the linear viscoelastic theory is a useful starting point.

2 Molecular Mechanisms

When subjected to an applied stress, polymers may deform by either or both of two fundamen-
tally different atomistic mechanisms. The lengths and angles of the chemical bonds connecting
the atoms may distort, moving the atoms to new positions of greater internal energy. This is a
small motion and occurs very quickly, requiring only ≈ 10−12 seconds.

If the polymer has sufficient molecular mobility, larger-scale rearrangements of the atoms
may also be possible. For instance, the relatively facile rotation around backbone carbon-
carbon single bonds can produce large changes in the conformation of the molecule. Depending
on the mobility, a polymer molecule can extend itself in the direction of the applied stress, which
decreases its conformational entropy (the molecule is less “disordered”). Elastomers — rubber
— respond almost wholly by this entropic mechanism, with little distortion of their covalent
bonds or change in their internal energy.

1For an overview of nonlinear viscoelastic theory, see for instance W.N. Findley et al., Creep and Relaxation
of Nonlinear Viscoelastic Materials, Dover Publications, New York, 1989.
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The combined first and second laws of thermodynamics state how an increment of mechanical
work f dx done on the system can produce an increase in the internal energy dU or a decrease
in the entropy dS:

f dx = dU − T dS (1)

Clearly, the relative importance of the entropic contribution increases with temperature T , and
this provides a convenient means of determining experimentally whether the material’s stiffness
in energetic or entropic in origin. The retractive force needed to hold a rubber band at fixed
elongation will increase with increasing temperature, as the increased thermal agitation will
make the internal structure more vigorous in its natural attempts to restore randomness. But
the retractive force in a stretched steel specimen — which shows little entropic elasticity — will
decrease with temperature, as thermal expansion will act to relieve the internal stress.

In contrast to the instantaneous nature of the energetically controlled elasticity, the con-
formational or entropic changes are processes whose rates are sensitive to the local molecular
mobility. This mobility is influenced by a variety of physical and chemical factors, such as molec-
ular architecture, temperature, or the presence of absorbed fluids which may swell the polymer.
Often, a simple mental picture of “free volume” — roughly, the space available for molecular
segments to act cooperatively so as to carry out the motion or reaction in question — is useful
in intuiting these rates.

These rates of conformational change can often be described with reasonable accuracy by
Arrhenius-type expressions of the form

−E†
rate ∝ exp (2)

RT

where E† is an apparent activation energy of the process and R = 8.314J/mol − ◦K is the Gas
Constant. At temperatures much above the “glass transition temperature,” labeled Tg in Fig.
1, the rates are so fast as to be essentially instantaneous, and the polymer acts in a rubbery
manner in which it exhibits large, instantaneous, and fully reversible strains in response to an
applied stress.

Figure 1: Temperature dependence of rate.

Conversely, at temperatures much less than Tg, the rates are so slow as to be negligible.
Here the chain uncoiling process is essentially “frozen out,” so the polymer is able to respond
only by bond stretching. It now responds in a “glassy” manner, responding instantaneously
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and reversibly but being incapable of being strained beyond a few percent before fracturing in
a brittle manner.

In the range near Tg, the material is midway between the glassy and rubbery regimes.
Its response is a combination of viscous fluidity and elastic solidity, and this region is termed
“leathery,” or, more technically, “viscoelastic”. The value of Tg is an important descriptor of
polymer thermomechanical response, and is a fundamental measure of the material’s propensity
for mobility. Factors that enhance mobility, such as absorbed diluents, expansive stress states,
and lack of bulky molecular groups, all tend to produce lower values of Tg. The transparent
polyvinyl butyral film used in automobile windshield laminates is an example of a material that
is used in the viscoelastic regime, as viscoelastic response can be a source of substantial energy
dissipation during impact.

At temperatures well below Tg, when entropic motions are frozen and only elastic bond de-
formations are possible, polymers exhibit a relatively high modulus, called the “glassy modulus”
Eg, which is on the order of 3 GPa (400 kpsi). As the temperature is increased through Tg, the
stiffness drops dramatically, by perhaps two orders of magnitude, to a value called the “rubbery
modulus” Er. In elastomers that have been permanently crosslinked by sulphur vulcanization
or other means, the value of Er is determined primarily by the crosslink density; the kinetic
theory of rubber elasticity gives the relation as

1
σ = NRT

(
λ−

λ2

)
(3)

where σ is the stress, N is the crosslink density (mol/m3), and λ = L/L0 is the extension
ratio. Differentiation of this expression gives the slope of the stress-strain curve at the origin as
Er = 3NRT .

If the material is not crosslinked, the stiffness exhibits a short plateau due to the ability
of molecular entanglements to act as network junctions; at still higher temperatures the entan-
glements slip and the material becomes a viscous liquid. Neither the glassy nor the rubbery
modulus depends strongly on time, but in the vicinity of the transition near Tg time effects can
be very important. Clearly, a plot of modulus versus temperature, such as is shown in Fig. 2, is a
vital tool in polymer materials science and engineering. It provides a map of a vital engineering
property, and is also a fingerprint of the molecular motions available to the material.

Figure 2: A generic modulus-temperature map for polymers.
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3 Phenomenological Aspects

Experimentally, one seeks to characterize materials by performing simple laboratory tests from
which information relevant to actual in-use conditions may be obtained. In the case of vis-
coelastic materials, mechanical characterization often consists of performing uniaxial tensile
tests similar to those used for elastic solids, but modified so as to enable observation of the
time dependency of the material response. Although many such “viscoelastic tensile tests” have
been used, one most commonly encounters only three: creep, stress relaxation, and dynamic
(sinusoidal) loading.

Creep

The creep test consists of measuring the time dependent strain ε(t) = δ(t)/L0 resulting from
the application of a steady uniaxial stress σ0 as illustrated in Fig. 3. These three curves are the
strains measured at three different stress levels, each one twice the magnitude of the previous
one.

Figure 3: Creep strain at various constant stresses.

Note in Fig. 3 that when the stress is doubled, the resulting strain in doubled over its full
range of time. This occurs if the materials is linear in its response. If the strain-stress relation
is linear, the strain resulting from a stress aσ, where a is a constant, is just the constant a times
the strain resulting from σ alone. Mathematically,

ε(aσ) = aε(σ)

This is just a case of “double the stress, double the strain.”
If the creep strains produced at a given time are plotted as the abscissa against the applied

stress as the ordinate, an “isochronous” stress-strain curve would be produced. If the material
is linear, this “curve” will be a straight line, with a slope that increases as the chosen time is
decreased.

For linear materials, the family of strain histories ε(t) obtained at various constant stresses
may be superimposed by normalizing them based on the applied stress. The ratio of strain to
stress is called the “compliance” C, and in the case of time-varying strain arising from a constant
stress the ratio is the “creep compliance”:

ε(t)
Ccrp(t) =

σ0
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A typical form of this function is shown in Fig. 4, plotted against the logarithm of time. Note
that the logarithmic form of the plot changes the shape of the curve drastically, stretching out
the short-time portion of the response and compressing the long-time region. Upon loading,
the material strains initially to the “glassy” compliance Cg; this is the elastic deformation
corresponding to bond distortion. In time, the compliance rises to an equilibrium or “rubbery”
value Cr, corresponding to the rubbery extension of the material. The value along the abscissa
labeled “log τ” marks the inflection from rising to falling slope, and τ is called the “relaxation
time” of the creep process.

Figure 4: The creep compliance function Ccrp(t).

Stress relaxation

Another common test, easily conducted on Instron or other displacement-controlled machines,
consists of monitoring the time-dependent stress resulting from a steady strain as seen in Fig. 5.
This is the converse of Fig. 3; here the stress curves correspond to three different levels of
constant strain, each one twice the magnitude of the previous one.

Figure 5: Measurement of relaxation response.

Analogously with creep compliance, one may superimpose the relaxation curves by means
of the “relaxation modulus,” defined as Erel(t) = σ(t)/ε0, plotted against log time in Fig. 6.
At short times, the stress is at a high plateau corresponding to a “glassy” modulus Eg, and
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then falls exponentially to a lower equilibrium “rubbery” modulus Er as the polymer molecules
gradually accommodate the strain by conformational extension rather than bond distortion.

Figure 6: The stress relaxation modulus Erel(t). Here Eg = 100, Er = 10, and τ = 1.

Creep and relaxation are both manifestations of the same molecular mechanisms, and one
should expect that Erel and Ccrp are related. However even though Eg = 1/Cg and Er = 1/Cr, in
general Erel(t) = 1/Ccrp(t). In particular, the relaxation response moves toward its equilibrium
value more quickly than does the creep response.

Dynamic loading

Creep and stress relaxation tests are convenient for studying material response at long times
(minutes to days), but less accurate at shorter times (seconds and less). Dynamic tests, in which
the stress (or strain) resulting from a sinusoidal strain (or stress) is measured, are often well-
suited for filling out the “short-time” range of polymer response. When a viscoelastic material
is subjected to a sinusoidally varying stress, a steady state will eventually be reached2 in which
the resulting strain is also sinusoidal, having the same angular frequency but retarded in phase
by an angle δ; this is analogous to the delayed strain observed in creep experiments. The strain
lags the stress by the phase angle δ, and this is true even if the strain rather than the stress is
the controlled variable.

If the origin along the time axis is selected to coincide with a time at which the strain passes
through its maximum, the strain and stress functions can be written as:

ε = ε0 cosωt (4)

σ = σ0 cos(ωt + δ)

Using an algebraic maneuver common in the analysis of reactive electrical circuits and other
harmonic systems, it is convenient to write the stress function as a complex quantity σ∗ whose
real part is in phase with the strain and whose imaginary part is 90◦ out of phase with it:

σ∗ = σ′0 cosωt+ i σ
′′
0 sinωt (6)

√
Here i = −1 and the asterisk denotes a complex quantity as usual.

2The time needed for the initial transient effect to die out will itself be dependent on the material’s viscoelastic
response time, and in some situations this can lead to experimental errors. Problem 5 develops the full form of
the dynamic response, including the initial transient term.
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It can be useful to visualize the observable stress and strain as the projection on the real
axis of vectors rotating in the complex plane at a frequency ω. If we capture their positions just
as the strain vector passes the real axis, the stress vector will be ahead of it by the phase angle
δ as seen in Fig. 7.

Figure 7: The “rotating-vector” representation of harmonic stress and strain.

Figure 7 makes it easy to develop the relations between the various parameters in harmonic
relations:

tan δ = σ′′0/σ
′
0 (7)

|σ∗| = σ0 =

σ

√
(σ′0)

2 + (σ′′0 )
2 (8)

′
0 = σ0 cos δ (9)

σ′′0 = σ0 sin δ (10)

We can use this complex form of the stress function to define two different dynamic moduli,
both being ratios of stress to strain as usual but having very different molecular interpretations
and macroscopic consequences. The first of these is the “real,” or “storage,” modulus, defined
as the ratio of the in-phase stress to the strain:

E′ = σ′0/ε0 (11)

The other is the “imaginary,” or “loss,” modulus, defined as the ratio of the out-of-phase stress
to the strain:

E′′ = σ′′0/ε0 (12)

Example 1

The terms “storage” and “loss” can be understood more readily by considering the mechanical work
done per loading cycle. The quantity

∫
σ dε is the strain energy per unit volume (since σ = force/area

and ε = distance/length). Integrating the in-phase and out-of-phase components separately:∮ ∮
dε

W = σdε = σ dt (13)
dt

=

∫ 2π/ω 2π/ω

(σ′0 cosωt)(−ε0ω sinωt)dt+
0

∫
(σ′′0 sinωt)(−ε0ω sinωt)dt (14)

0
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= 0− πσ′′0 ε0 (15)

Note that the in-phase components produce no net work when integrated over a cycle, while the out-of-
phase components result in a net dissipation per cycle equal to:

Wdis = πσ
′′
0 ε0 = πσ0ε0 sin δ (16)

This should be interpreted to illustrate that the strain energy associated with the in-phase stress and
strain is reversible; i.e. that energy which is stored in the material during a loading cycle can be re-
covered without loss during unloading. Conversely, energy supplied to the material by the out-of-phase
components is converted irreversibly to heat.

The maximum energy stored by the in-phase components occurs at the quarter-cycle point, and this
maximum stored energy is: ∫ π/2ω

Wst = (σ′0 cosωt)(−ε0ω sinωt)dt
0

1 1
= − σ′0ε0 = − σ0ε0 cos δ (17)

2 2

The relative dissipation – the ratio of Wdis/Wst – is then related to the phase angle by:

Wdis
= 2π tan δ (18)

Wst

We will also find it convenient to express the harmonic stress and strain functions as expo-
nentials:

σ = σ∗eiωt0 (19)

ε = ε∗0e
iωt (20)

The eiωt factor follows from the Euler relation eiθ = cos θ + i sin θ, and writing both the stress
and the strain as complex numbers removes the restriction of placing the origin at a time of
maximum strain as was done above. The complex modulus can now be written simply as:

E∗ = σ∗0/ε
∗
0 (21)

4 Mathematical Models for Linear Viscoelastic Response

4.1 The Maxwell Spring-Dashpot Model

The time dependence of viscoelastic response is analogous to the time dependence of reactive
electrical circuits, and both can be described by identical ordinary differential equations in time.
A convenient way of developing these relations while also helping visualize molecular motions
employs “spring-dashpot” models. These mechanical analogs use “Hookean” springs, depicted
in Fig. 8 and described by

σ = kε

where σ and ε are analogous to the spring force and displacement, and the spring constant k
is analogous to the Young’s modulus E; k therefore has units of N/m2. The spring models
the instantaneous bond deformation of the material, and its magnitude will be related to the
fraction of mechanical energy stored reversibly as strain energy.

8



Figure 8: Hookean spring (left) and Newtonian dashpot (right).

The entropic uncoiling process is fluidlike in nature, and can be modeled by a “Newtonian
dashpot” also shown in Fig. 8, in which the stress produces not a strain but a strain rate:

σ = ηε̇

Here the overdot denotes time differentiation and η is a viscosity with units of N-s/m2. In many
of the relations to follow, it will be convenient to employ the ratio of viscosity to stiffness:

η
τ =

k

The unit of τ is time, and it will be seen that this ratio is a useful measure of the response time
of the material’s viscoelastic response.

Figure 9: The Maxwell model.

The “Maxwell” solid shown in Fig. 9 is a mechanical model in which a Hookean spring and a
Newtonian dashpot are connected in series. The spring should be visualized as representing the
elastic or energetic component of the response, while the dashpot represents the conformational
or entropic component. In a series connection such as the Maxwell model, the stress on each
element is the same and equal to the imposed stress, while the total strain is the sum of the
strain in each element:

σ = σs = σd

ε = εs + εd

Here the subscripts s and d represent the spring and dashpot, respectively. In seeking a single
equation relating the stress to the strain, it is convenient to differentiate the strain equation and
then write the spring and dashpot strain rates in terms of the stress:

σ̇ σ
ε̇ = ε̇s + ε̇d = +

k η

Multiplying by k and using τ = η/k:

1
kε̇ = σ̇ + σ (22)

τ

This expression is a “constitutive” equation for our fictitious Maxwell material, an equation that
relates the stress to the strain. Note that it contains time derivatives, so that simple constant of
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proportionality between stress and strain does not exist. The concept of “modulus” – the ratio
of stress to strain – must be broadened to account for this more complicated behavior.

Eqn. 22 can be solved for the stress σ(t) once the strain ε(t) is specified, or for the strain if
the stress is specified. Two examples will illustrate this process:

Example 2

In a stress relaxation test, a constant strain ε0 acts as the “input” to the material, and we seek an
expression for the resulting time-dependent stress; this is depicted in Fig. 10.

Figure 10: Strain and stress histories in the stress relaxation test.

Since in stress relaxation ε̇ = 0, Eqn. 22 becomes

dσ 1
= − σ

dt τ

Separating variables and integrating: ∫ σ dσ 1
= −

σ0 σ τ

∫ t

dt
0

t
lnσ − ln σ0 = −

τ

σ(t) = σ0 exp(−t/τ)

Here the significance of τ ≡ η/k as a characteristic “relaxation time” is evident; it is physically the time
needed for the stress to fall to 1/e of its initial value. It is also the time at which the stress function
passes through an inflection when plotted against log time.

The relaxation modulus Erel may be obtained from this relation directly, noting that initially only
the spring will deform and the initial stress and strain are related by σ0 = kε0. So

σ(t) σ0
Erel(t) = = exp(−t/τ)

ε0 ε0

Erel(t) = k exp(−t/τ) (23)

This important function is plotted schematically in Fig. 11. The two adjustable parameters in the model,
k and τ , can be used to force the model to match an experimental plot of the relaxation modulus at two
points. The spring stiffness k would be set to the initial or glass modulus Eg, and τ would be chosen to
force the value k/e to match the experimental data at t = τ .
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Figure 11: Relaxation modulus for the Maxwell model.

The relaxation time τ is strongly dependent on temperature and other factors that effect the mobility

of the material, and is roughly inverse to the rate of molecular motion. Above Tg, τ is very short; below

Tg, it is very long. More detailed consideration of the temperature dependence will be given in a later

section, in the context of “thermorheologically simple” materials.

Example 3

In the case of the dynamic response, the time dependency of both the stress and the strain are of the
form exp(iωt). All time derivatives will therefore contain the expression (iω) exp(iωt), so Eqn. 22 gives:

k (iω) ε∗0 exp(iωt) =

(
1

iω +

)
σ∗0 exp(iωt)τj

The complex modulus E∗ is then

E∗
σ∗

= 0 k(iω) k(iωτ)
= = (24)

ε∗ 1
0 iω + 1 + iωτ

τj

This equation can be manipulated algebraically (multiply and divide by the complex conjugate of the
denominator) to yield:

2
∗ kω τ2 kωτ

E = + i (25)
1 + ω2τ2 1 + ω2τ2

In Eq. 25, the real and imaginary components of the complex modulus are given explicitly; these are the

“Debye” relations also important in circuit theory.

4.2 The Standard Linear Solid (Maxwell Form)

Most polymers do not exhibit the unrestricted flow permitted by the Maxwell model, although
it might be a reasonable model for Silly Putty or warm tar. Therefore Eqn. 23 is valid only
for a very limited set of materials. For more typical polymers whose conformational change
is eventually limited by the network of entanglements or other types of junction points, more
elaborate spring-dashpot models can be used effectively.

Placing a spring in parallel with the Maxwell unit gives a very useful model known as the
“Standard Linear Solid” (S.L.S.) shown in Fig. 12. This spring has stiffness ke, so named because
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Figure 12: The Maxwell form of the Standard Linear Solid.

it provides an “equilibrium” or rubbery stiffness that remains after the stresses in the Maxwell
arm have relaxed away as the dashpot extends.

In this arrangement, the Maxwell arm and the parallel spring ke experience the same strain,
and the total stress σ is the sum of the stress in each arm: σ = σe + σm. It is awkward to solve
for the stress σm in the Maxwell arm using Eqn. 22, since that contains both the stress and its
time derivative. The Laplace transformation is very convenient in this and other viscoelasticity
problems, because it reduces differential equations to algebraic ones. Appendixes A lists some
transform pairs encountered often in these problems.

Since the stress and strain are zero as the origin is approached from the left, the transforms
of the time derivatives are just the Laplace variable s times the transforms of the functions;
denoting the transformed functions with an overline, we have L(ε̇) = sε and L(σ̇) = sσ. Then
writing the transform of an expression such as Eqn. 22 is done simply by placing a line over the
time-dependent functions, and replacing the time-derivative overdot by an s coefficient:

1 1
kε̇ = σ̇m + σm −→ k1sε = sσm + σm

τ τ

Solving for σm:

k1s
σm = ε (26)

s+ 1
τ

Adding the stress σe = keε in the equilibrium spring, the total stress is:

k1s k1s
σ = keε+ ε =

+ 1
τ

{
ke +

s s+ 1
τ

}
ε

This result can be written

σ = Eε (27)

where for this model the parameter E is

k1sE = ke + (28)
s+ 1

τ
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Eqn. 27, which is clearly reminiscent of Hooke’s Law σ = Eε but in the Laplace plane, is called
the associated viscoelastic constitutive equation. Here the specific expression for E is that of the
Standard Linear Solid model, but other models could have been used as well.

For a given strain input function ε(t), we obtain the resulting stress function in three steps:

1. Obtain an expression for the transform of the strain function, ε(s).

2. Form the algebraic product σ(s) = Eε(s).

3. Obtain the inverse transform of the result to yield the stress function in the time plane.

Example 4

In the case of stress relaxation, the strain function ε(t) is treated as a constant ε0 times the “Heaviside”
or “unit step” function u(t):

0, t < 0
ε(t) = ε0u(t), u(t) =

{
1, t ≥ 0

This has the Laplace transform

ε0
ε =

s

Using this in Eqn. 27 and dividing through by ε0, we have

σ ke k1
= +

ε s s+ 1
0 τ

Since L−1 1/(s+ a) = e−at, this can be inverted directly to give

σ(t)
≡ Erel(t) = ke + k1 exp(−t/τ) (29)

ε0

This function, which is just that of the Maxwell model shifted upward by an amount ke, was used to
generate the curve shown in Fig. 6.

Example 5

The form of Eqn. 27 is convenient when the stress needed to generate a given strain is desired. It is
somewhat awkward when the strain generated by a given stress is desired, since then the parameter E
appears in the denominator:

σ σ
ε = =
E k + k1s

e s+ 1τ

This is more difficult to invert, and in such cases symbolic manipulation software such as MapleTM can
be helpful. For instance, if we want to compute the creep compliance of the Maxwell Standard Linear
Solid, we could write:

read transformation library

> with(inttrans):

define governing equation

> eq1:=sigbar=EE*epsbar;

Constant stress sig0:

> sigbar:=laplace(sig0,t,s);
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EE viscoelastic operator - Maxwell S.L.S. model

> EE:= k[e]+k[1]*s/(s+1/tau);

Solve governing equation for epsbar and invert:

> C[crp](t):=simplify((invlaplace(solve(eq1,epsbar),s,t))/sig0);

k[e] t

-k[e] - k[1] + k[1] exp(- -----------------)

tau (k[e] + k[1])

C[crp](t) := - --------------------------------------------

k[e] (k[e] + k[1])

This result can be written as

Ccrp(t) = Cg + (Cr − C
−

g)
(
1− e t/τc

)
(30)

where
1 1 ke + k1

Cg = , Cr = , τc = τ
ke + k1 ke

(
ke

)
The glassy compliance Cg is the compliance of the two springs ke and k1 acting in parallel, and the
rubbery compliance Cr is that of spring ke alone, as expected. Less obvious is that the characteristic
time for creep τc (sometimes called the “retardation” time) is longer than the characteristic time for
relaxation τ , by a factor equal to the ratio of the glassy to the rubbery modulus. This is a general result,
not restricted to the particular model used.

A less awkward form for compliance problems is produced when “Voigt-type” rather than Maxwell-
type models are used; see problems 7 and 8.

The Standard Linear Solid is a three-parameter model capable of describing the general
features of viscoelastic relaxation: ke and k1 are chosen to fit the glassy and rubbery moduli,
and τ is chosen to place the relaxation in the correct time interval:

ke = Er (31)

k1 = Eg − Er (32)

τ = t@Erel =

(
1

Er + (Eg − Er)
e

)
(33)

This forces the S.L.S. prediction to match the experimental data at three points, but the ability
of the model to fit the experimental data over the full range of the relaxation is usually poor.
The relaxation modulus predicted by the S.L.S. drops from Eg to Er in approximately two
decades3 of time, which is generally too abrupt a transition.

4.3 The Wiechert Model

A real polymer does not relax with a single relaxation time as predicted by the previous mod-
els. Molecular segments of varying length contribute to the relaxation, with the simpler and
shorter segments relaxing much more quickly than the long ones. This leads to a distribution
of relaxation times, which in turn produces a relaxation spread over a much longer time than
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Figure 13: The Wiechert model.

can be modeled accurately with a single relaxation time. When the engineer considers it nec-
essary to incorporate this effect, the Wiechert model illustrated in Fig. 13 can have as many
spring-dashpot Maxwell elements as are needed to approximate the distribution satisfactorily.

The total stress σ transmitted by the model is the stress in the isolated spring (of stiffness
ke) plus that in each of the Maxwell spring-dashpot arms:

σ = σe +
∑
σj

j

From Eqn. 26, the stress in the Maxwell arm is

kjsε
σj = (

s+ 1
τj

Then

)

σ = σe +
∑

j
σj =

 k s
ke +

j

∑
j

(
s+ 1

τ


j

) ε (34)

The quantity in braces is the viscoelastic modu


lus operator E define


d in Eqn. 27 for the Wiechert

model.

Example 6

In stress relaxation tests, we have

ε(t) = ε0 ⇒ ε(s) = ε0/s

σ(s) = E(s)ε(s) =


kjs

ke +
s+ 1

j τj

   ∑  ε0
=

s

ke
+

s

∑ kj

s+ 1
j τj


ε0

3A “decade” of time in our context is


a multiple of ten, s


ay from


103 to 104 seconds,


rather than a span of ten

years.
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∑ t
σ(t) = L−1[σ(s)] =

 −
ke + kj exp ε

τ
j

(
j

)
0 (35)

Dividing by ε0, the relaxation modulus is

 

Erel(t) = ke +
∑

kj exp
j

(
−t

τj

)
(36)

The material constants in this expression (ke and the various kj and τj) can be selected by forcing the
predicted values of Erel(t) as given by Eqn. 36 to match those determined experimentally. Prob. 19
provides an example of such a procedure.

Example 7

Consider the stress function resulting from a constant-strain-rate test:

ε = Rεt −→ ε̄(s) = Rε/s
2

where Rε is the strain rate. Then

kjs Rε keRε kjRε
σ̄(s) = E(s)ε̄(s) =


ke +∑

= +
s+ 1 s2 s2 1

j τj


 ∑

j s
(
s+ τj

)
σ(t) = keRεt+

∑
kjRετj [1− exp(−t/τj)] (37)

j

Note that the stress-time function, and hence the stress-strain curve, is not linear. It is not true, therefore,
that a curved stress-strain diagram implies that the material response is nonlinear. It is also interesting to
note that the slope of the constant-strain-rate stress-strain curve is related to the value of the relaxation
modulus evaluated at the same time:

dσ dσ dt dσ 1
= · = · =



eRε +

∑ 1
k kjRε exp(−t/τj)

dε dt dε dt Rε
j



Rε

=


ke +∑

kj exp(−t/τj)


 ≡ Erel(t) |t=ε/Rε (38)

j

Example 8

It may be that the input strain function is not known as a mathematical expression, or its mathematical
expression may be so complicated as to make the transform process intractable. In those cases, one may
return to the differential constitutive equation and recast it in finite-difference form so as to obtain a
numerical solution. Recall that the stress in the jth arm of the Wiechert model is given by

dσj 1 dε
+ σj = kj (39)

dt τj dt

This can be written in finite difference form as
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σtj − σ
t−1
j 1 t − ε

+ σt
ε t−1

j = kj (40)
∆t τj ∆t

where the superscripts t and t− l indicate values before and after the passage of a small time increment
∆t. Solving for σtj :

σt
1

j = k (εt − εt−1j ) + σt−1 (41)
1 + (∆t/τ j

j)

Now summing over all arms of the model and adding

[
the stress in the equilibr

]
ium spring:

∑ k (εtj − εt−1) + σt−1
σt = k t j

eε + (42)
1 + (∆t/τj)

j

This constitutes a recursive algorithm which the computer can use to calculate successive values of σt

beginning at t = 0. In addition to storing the various kj and τj which constitute the material description,

the computer must also keep the previous values of each arm stress (the σt−1j ) in storage.

4.4 The Boltzman Superposition Integral

As seen in the previous sections, linear viscoelasticity can be stated in terms of mechanical models
constructed from linear springs and dashpots. These models generate constitutive relations that
are ordinary differential equations; see Probs. 13 and 14 as examples of this. However, integral
equations could be used as well, and this integral approach is also used as a starting point for
viscoelastic theory.

Integrals are summing operations, and this view of viscoelasticity takes the response of the
material at time t to be the sum of the responses to excitations imposed at all previous times.
The ability to sum these individual responses requires the material to obey a more general
statement of linearity than we have invoked previously, specifically that the response to a number
of individual excitations be the sum of the responses that would have been generated by each
excitation acting alone. Mathematically, if the stress due to a strain ε1(t) is σ(ε1) and that due
to a different strain ε2(t) is σ(ε2), then the stress due to both strains is σ(ε1+ε2) = σ(ε1)+σ(ε2).
Combining this with the condition for multiplicative scaling used earlier, we have as a general
statement of linear viscoelasticity:

σ(aε1 + bε2) = aσ(ε1) + bσ(ε2) (43)

The “Boltzman Superposition Integral” statement of linear viscoelastic response follows from
this definition. Consider the stress σ1(t) at time t due to the application of a small strain ∆ε1
applied at a time ξ1 previous to t; this is given directly from the definition of the relaxation
modulus as

σ1(t) = Erel(t− ξ1)∆ε1

Similarly, the stress σ2(t) due to a strain increment ∆ε2 applied at a different time ξ2 is

σ2(t) = Erel(t− ξ2)∆ε2

If the material is linear, the total stress at time t due to both strain increments together can be
obtained by superposition of these two individual effects:
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σ(t) = σ1(t) + σ2(t) = Erel(t− ξ1)∆ε1 + Erel(t− ξ2)∆ε2

As the number of applied strain increments increases so as to approach a continuous distribution,
this becomes:

σ(t) =
∑
σj(t) =

j

∑
Erel(t− ξj)∆εj

j∫ t t dε(ξ)
−→ σ(t) = Erel(t− ξ) dε =

∫
Erel(t− ξ) dξ (44)

−∞ −∞ dξ

Example 9

In the case of constant strain rate (ε(t) = Rεt) we have

dε(ξ) d(Rεξ)
= = Rε

dξ dξ

For S.L.S. materials response (Erel(t) = ke + k1 exp[−t/τ ]),

−(t−ξ)

Erel(t− ξ) = ke + k1e τ

Eqn. 44 gives the stress as ∫ t
−(t−ξ)

σ(t) = ke + k1e τ Rε dξ
0

Maple statements for carrying out these opera

(
tions might be:

)

define relaxation modulus for S.L.S.

>Erel:=k[e]+k[1]*exp(-t/tau);

define strain rate

>eps:=R*t;

integrand for Boltzman integral

>integrand:=subs(t=t-xi,Erel)*diff(subs(t=xi,eps),xi);

carry out integration

>’sigma(t)’=int(integrand,xi=0..t);

which gives the result:

σ(t) = keRεt+ k1Rετ [1− exp(−t/τ)]

This is identical to Eqn. 37, with one arm in the model.

The Boltzman integral relation can be obtained formally by recalling that the transformed
relaxation modulus is related simply to the associated viscoelastic modulus in the Laplace plane
as

ε0
stress relaxation : ε(t) = ε0u(t)→ ε =

s

ε0
σ = Eε = E

s

σ 1¯= Erel(s) = E(s)
ε0 s
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¯
f̄Since s ˙= f , the following relations hold:

¯σ̄ = Eε ¯ ˙ ¯¯= sErelε̄ = Erelε̄ = E ¯
relε̇

The last two of the above are of the form for which the convolution integral transform applies
(see Appendix A), so the following four equivalent relations are obtained immediately:

σ(t) =

∫ t
Erel(t− ξ)ε̇(ξ) dξ

0

=

∫ t
Erel(ξ)ε̇(t− ξ) dξ

0

=

∫ t
Ėrel(t− ξ)ε(ξ) dξ

0

t

=

∫
Ėrel(ξ)ε(t− ξ) dξ (45)

0

These relations are forms of Duhamel’s formula, where Erel(t) can be interpreted as the
stress σ(t) resulting from a unit input of strain. If stress rather than strain is the input quantity,
then an analogous development leads to

ε(t) =

∫ t
Ccrp(t− ξ)σ̇(ξ) dξ (46)

0

where Ccrp(t), the strain response to a unit stress input, is the quantity defined earlier as the
creep compliance. The relation between the creep compliance and the relaxation modulus can
now be developed as:

σ̄ = sĒrelε̄

ε̄ = sC̄crpσ̄

σ̄ε̄ = s2
1

Ē ¯ ¯ ¯
relCcrpε̄σ̄ −→ ErelCcrp =

s2∫ t t

Erel(t− ξ)Ccrp(ξ) dξ =
∫
Erel(ξ)Ccrp(t− ξ) dξ = t

0 0

It is seen that one must solve an integral equation to obtain a creep function from a relaxation
function, or vice versa. This deconvolution process may sometimes be performed analytically
(probably using Laplace transforms), and in intractable cases some use has been made of nu-
merical approaches.

4.5 Effect of Temperature

As mentioned at the outset (cf. Eqn. 2), temperature has a dramatic influence on rates of vis-
coelastic response, and in practical work it is often necessary to adjust a viscoelastic analysis for
varying temperature. This strong dependence of temperature can also be useful in experimental
characterization: if for instance a viscoelastic transition occurs too quickly at room temperature
for easy measurement, the experimenter can lower the temperature to slow things down.

In some polymers, especially “simple” materials such as polyisobutylene and other amor-
phous thermoplastics that have few complicating features in their microstructure, the relation
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between time and temperature can be described by correspondingly simple models. Such mate-
rials are termed “thermorheologically simple”.

For such simple materials, the effect of lowering the temperature is simply to shift the
viscoelastic response (plotted against log time) to the right without change in shape. This is
equivalent to increasing the relaxation time τ , for instance in Eqns. 29 or 30, without changing
the glassy or rubbery moduli or compliances. A “time-temperature shift factor” aT (T ) can be
defined as the horizontal shift that must be applied to a response curve, say Ccrp(t), measured
at an arbitrary temperature T in order to move it to the curve measured at some reference
temperature Tref .

log(aT ) = log τ(T )− log τ(Tref ) (47)

This shifting is shown schematically in Fig. 14.

Figure 14: The time-temperature shifting factor.

In the above we assume a single relaxation time. If the model contains multiple relaxation
times, thermorheological simplicity demands that all have the same shift factor, since otherwise
the response curve would change shape as well as position as the temperature is varied.

If the relaxation time obeys an Arrhenius relation of the form τ(T ) = τ0 exp(E
†/RT ), the

shift factor is easily shown to be (see Prob. 17)

E† 1 1
log aT = − (48)

2.303R

(
T Tref

)

Here the factor 2.303 = ln 10 is the conversion between natural and base 10 logarithms, which
are commonly used to facilitate graphical plotting using log paper.

While the Arrhenius kinetic treatment is usually applicable to secondary polymer transitions,
many workers feel the glass-rubber primary transition appears governed by other principles. A
popular alternative is to use the “W.L.F.” equation at temperatures near or above the glass
temperature:

−C1(T − Tref )
log aT = (49)

C2 + (T − Tref )

Here C1 and C2 are arbitrary material constants whose values depend on the material and choice
of reference temperature Tref . It has been found that if Tref is chosen to be Tg, then C1 and C2
often assume “universal” values applicable to a wide range of polymers:
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−17.4(T − Tg)
log aT = (50)

51.6 + (T − Tg)

where T is in Celsius. The original W.L.F. paper4 developed this relation empirically, but
rationalized it in terms of free-volume concepts.

A series of creep or relaxation data taken over a range of temperatures can be converted to a
single “master curve” via this horizontal shifting. A particular curve is chosen as reference, then
the other curves shifted horizontally to obtain a single curve spanning a wide range of log time
as shown in Fig. 15. Curves representing data obtained at temperatures lower than the reference
temperature appear at longer times, to the right of the reference curve, so will have to shift left;
this is a positive shift as we have defined the shift factor in Eqn. 47. Each curve produces its
own value of aT , so that aT becomes a tabulated function of temperature. The master curve is
valid only at the reference temperature, but it can be used at other temperatures by shifting it
by the appropriate value of log aT .

Figure 15: Time-temperature superposition.

The labeling of the abscissa as log(t/aT ) = log t − log at in Fig. 15 merits some discussion.
Rather than shifting the master curve to the right for temperatures less than the reference
temperature, or to the left for higher temperatures, it is easier simply to renumber the axis,
increasing the numbers for low temperatures and decreasing them for high. The label therefore
indicates that the numerical values on the horizontal axis have been adjusted for temperature
by subtracting the log of the shift factor. Since lower temperatures have positive shift factors,
the numbers are smaller than they need to be and have to be increased by the appropriate shift
factor. Labeling axes this way is admittedly ambiguous and tends to be confusing, but the
correct adjustment is easily made by remembering that lower temperatures slow the creep rate,
so times have to be made longer by increasing the numbers on the axis. Conversely for higher
temperatures, the numbers must be made smaller.

Example 10

We wish to find the extent of creep in a two-temperature cycle that consists of t1 = 10 hours at 20◦C
followed by t2 = 5 minutes at 50 ◦C. The log shift factor for 50 ◦C, relative to a reference temperature
of 20◦C, is known to be −2.2.

4M.L. Williams, R.F. Landel, and J.D. Ferry, J. Am. Chem. Soc., Vol. 77, No. 14, pp. 3701–3707, 1955.

21



Using the given shift factor, we can adjust the time of the second temperature at 50◦C to an equivalent
time t′2 at 20

◦C as follows:

t′
t2 5 min

2 = = = 792 min = 13.2 h
a −2.2
T 10

Hence 5 minutes at 50◦C is equivalent to over 13 h at 20◦C. The total effective time is then the sum of
the two temperature steps:

t′ = t1 + t
′
2 = 10 + 13.2 = 23.2 h

The total creep can now be evaluated by using this effective time in a suitable relation for creep, for

instance Eqn. 30.

The effective-time approach to response at varying temperatures can be extended to an
arbitrary number of temperature steps:

tj
t′ =

(∑
t′j =

j

∑
aT (Tj)j

)

For time-dependent temperatures in general, we have T = T (t), so aT becomes an implicit
function of time. The effective time can be written for continuous functions as

t′ =

∫ t dξ
(51)

0 aT (ξ)

where ξ is a dummy time variable. This approach, while perhaps seeming a bit abstract, is of
considerable use in modeling time-dependent materials response. Factors such as damage due to
applied stress or environmental exposure can accelerate or retard the rate of a given response,
and this change in rate can be described by a time-expansion factor similar to aT but dependent
on other factors in addition to temperature.

Example 11

Consider a hypothetical polymer with a relaxation time measured at 20◦C of τ = 10 days, and with
glassy and rubbery moduli Eg = 100, Er = 10. The polymer can be taken to obey the W.L.F. equation
to a reasonable accuracy, with Tg = 0◦C. We wish to compute the relaxation modulus in the case of a
temperature that varies sinusoidally ±5◦ around 20◦C over the course of a day. This can be accomplished
by using the effective time as computed from Eqn. 51 in Eqn. 29, as shown in the following Maple
commands:

define WLF form of log shift factor

>log_aT:=-17.4*(T-Tg)/(51.6+(T-Tg));

find offset; want shift at 20C to be zero

>Digits:=4;Tg:=0;offset:=evalf(subs(T=20,log_aT));

add offset to WLF

>log_aT:=log_aT-offset;

define temperature function

>T:=20+5*cos(2*Pi*t);

get shift factor; take antilog

>aT:=10^log_aT;

replace time with dummy time variable xi

>aT:=subs(t=xi,aT);

get effective time t’

>t_prime:=int(1/aT,xi=0..t);
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define relaxation modulus

>Erel:=ke+k1*exp(-t_prime/tau);

define numerical parameters

>ke:=10;k1:=90;tau:=10;

plot result

>plot(Erel,t=0..10);

The resulting plot is shown in Fig. 16.

Figure 16: Relaxation modulus with time-varying temperature.

5 Viscoelastic Stress Analysis

5.1 Multiaxial Stress States

The viscoelastic expressions above have been referenced to a simple stress state in which a
specimen is subjected to uniaxial tension. This loading is germane to laboratory characterization
tests, but the information obtained from these tests must be cast in a form that allows application
to the multiaxial stress states that are encountered in actual design.

Many formulae for stress and displacement in structural mechanics problems are cast in
forms containing the Young’s modulus E and the Poisson’s ratio ν. To adapt these relations
for viscoelastic response, one might observe both longitudinal and transverse response in a
tensile test, so that both E(t) and ν(t) could be determined. Models could then be fit to both
deformation modes to find the corresponding viscoelastic operators E and N . However, it is
often more convenient to use the shear modulus G and the bulk modulus K rather than E and
ν, which can be done using the relations valid for isotropic linear elastic materials:

9GK
E = (52)

3K +G

3K − 2G
ν = (53)

6K + 2G

These important relations follow from geometrical or equilibrium arguments, and do not involve
considerations of time-dependent response. Since the Laplace transformation affects time and
not spatial parameters, the corresponding viscoelastic operators obey analogous relations in the
Laplace plane:
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9G(s)K(s)
E(s) =

3K(s) + G(s)

3K(s) − 2G(s)
N (s) =

6K(s) + 2G(s)

Figure 17: Relaxation moduli of polyisobutylene in dilation (K) and shear (G). From Huang,
M.G., Lee, E.H., and Rogers, T.G., “On the Influence of Viscoelastic Compressibility in Stress
Analysis,” Stanford University Technical Report No. 140 (1963).

These substitutions are useful because K(t) is usually much larger than G(t), and K(t)
usually experiences much smaller relaxations than G(t) (see Fig. 17). These observations lead
to idealizations of compressiblilty that greatly simplify analysis. First, if one takes Krel = Ke
to be finite but constant (only shear response viscoelastic), then

KeK = sKrel = s = Ke
s

3KeE
G =

9Ke − E

Secondly, if K is assumed not only constant but infinite (material incompressible, no hydrostatic
deformation), then

E
G =

3

1
N = ν =

2
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Example 12

The shear modulus of polyvinyl chloride (PVC) is observed to relax from a glassy value of Gg =800 MPa
to a rubbery value of Gr =1.67 MPa. The relaxation time at 75◦C is approximately τ =100 s, although
the transition is much broader than would be predicted by a single relaxation time model. But assuming
a standard linear solid model as an approximation, the shear operator is

(Gg −Gr)s
G = Gr +

s+ 1
τ

The bulk modulus is constant to a good approximation at Ke =1.33 GPa. These data can be used to
predict the time dependence of the Poisson’s ratio, using the expression

3Ke − 2G
N =

6Ke + 2G

On substituting the numerical values and simplifying, this becomes

9.97× 108
N = 0.25 +

4.79× 1011s+ 3.99× 109

The “relaxation” Poisson’s ratio — the time-dependent strain in one direction induced by a constant
strain in a transverse direction — is then

N 0.25 1
(

9.97× 108
νrel = = +

s s s 4.79× 1011s+ 3.99× 109

)

Inverting, this gives

νrel = 0.5− 0.25e−t/120

This function is plotted in Fig. 18. The Poisson’s ratio is seen to rise from a glassy value of 0.25 to a
rubbery value of 0.5 as the material moves from the glassy to the rubbery regime over time. Note that
the time constant of 120 s in the above expression is not the same as the relaxation time τ for the pure
shear response.

Figure 18: Time dependence of Poisson’s ratio for PVC at 75◦C, assuming viscoelastic shear
response and elastic hydrostatic response.
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In the case of material isotropy (properties not dependent on direction of measurement), at
most two viscoelastic operators — say G and K — will be necessary for a full characterization
of the material. For materials exhibiting lower orders of symmetry more descriptors will be
necessary: a transversely isotropic material requires four constitutive descriptors, an orthotropic
material requires nine, and a triclinic material twenty-one. If the material is both viscoelastic
and anisotropic, these are the number of viscoelastic operators that will be required. Clearly,
the analyst must be discerning in finding the proper balance between realism and practicality
in choosing models.

5.2 Superposition

Fortunately, it is often unnecessary to start from scratch in solving structural mechanics prob-
lems that involve viscoelastic materials. We will outline two convenient methods for adapting
standard solutions for linear elastic materials to the viscoelastic case, and the first of these is
based on the Boltzman superposition principle. We will illustrate this with a specific example,
that of the thin-walled pressure vessel.

Polymers such as polybutylene and polyvinyl chloride are finding increasing use in plumbing
and other liquid delivery systems, and these materials exhibit measurable viscoelastic time
dependency in their mechanical response. It is common to ignore these rate effects in design of
simple systems by using generous safety factors. However, in more critical situations the designer
may wish extend the elastic theory outlined in standard texts to include material viscoelasticity.

One important point to stress at the outset is that in many cases, the stress distribution
does not depend on the material properties and consequently is not influenced by viscoelasticity.
For instance, the “hoop” stress σθ in an open-ended cylindrical pressure vessel is

pr
σθ =

b

where p is the internal pressure, r is the vessel radius, and b is the wall thickness. If the material
happens to be viscoelastic, this relation — which contains no material constants — applies
without change.

However, the displacements — for instance the increase in radius δr— are affected, increasing
with time as the strain in the material increases via molecular conformational change. For an
open-ended cylindrical vessel with linear elastic material, the radial expansion is

pr2
δr =

bE

The elastic modulus in the denominator indicates that the radial expansion will increase as ma-
terial loses stiffness through viscoelastic response. In quantifying this behavior, it is convenient
to replace the modulus E by the compliance C = 1/E. The expression for radial expansion now
has the material constant in the numerator:

pr2
δr = C (54)

b

If the pressure p is constant, viscoelasticity enters the problem only through the material
compliance C, which must be made a suitable time-dependent function. (Here we assume
that values of r and b can be treated as constant, which will be usually be valid to a good
approximation.) The value of δr at time t is then simply the factor (pr2/b) times the value of
C(t) at that time.
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The function C(t) needed here is the material’s creep compliance, the time-dependent strain
exhibited by the material in response to an imposed unit tensile stress: Ccrp = ε(t)/σ0. The
standard linear solid, as given by Eqn. 30, gives the compliance as

Ccrp(t) = Cg + (C −t/τ
r − Cg) (1 − e ) (55)

where here it is assumed that the stress is applied at time t = 0. The radial expansion of a
pressure vessel, subjected to a constant internal pressure p0 and constructed of a material for
which the S.L.S. is a reasonable model, is then

p 2
0r

δr(t) =
b

This function is shown schematically in

[
Cg + (C − e−t/τr − Cg) (1 ) (56)

Fig. 19.

]

Figure 19: Creep of open-ended pressure vessel subjected to constant internal pressure.

The situation is a bit more complicated if both the internal pressure and the material com-
pliance are time-dependent. It is incorrect simply to use the above equation with the value of
p0 replaced by the value of p(t) at an arbitrary time, because the radial expansion at time t is
influenced by the pressure at previous times as well as the pressure at the current time.

The correct procedure is to “fold” the pressure and compliance functions together in a
convolution integral as was done in developing the Boltzman Superposition Principle. This
gives:

r2
δr(t) =

∫ t
Ccrp(t− ξ)ṗ(ξ) dξ (57)

b −∞

Example 13

Let the internal pressure be a constantly increasing “ramp” function, so that p = Rpt, with Rp being
the rate of increase; then we have ṗ(ξ) = Rp. Using the standard linear solid of Eqn. 55 for the creep
compliance, the stress is calculated from the convolution integral as

r2
δ

∫ t

r(t) =
[
Cg + (Cr − Cg) (1 − e

−(t−ξ)/τ )
]
Rp dξ

b 0

r2
=
b

[
RptCr −Rpτ (Cr − Cg)

(
1− e−t/τ

)]
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This function is plotted in Fig. 20, for a hypothetical material with parameters Cg = 1/3 × 105 psi−1,
Cr = 1/3 × 104 psi−1, b = 0.2 in, r = 2 in, τ = 1 month, and Rp = 100 psi/month. Note that the
creep rate increases from an initial value (r2/b)R C to a final value (r2p g /b)RpCr as the glassy elastic
components relax away.

Figure 20: Creep δr(t) of hypothetical pressure vessel for constantly increasing internal pressure.

When the pressure vessel has closed ends and must therefore resist axial as well as hoop
stresses, the radial expansion is δr = (pr2/bE) [1− (ν/2)]. The extension of this relation to
viscoelastic material response and a time-dependent pressure is another step up in complexity.
Now two material descriptors, E and ν, must be modeled by suitable time-dependent functions,
and then folded into the pressure function. The superposition approach described above could
be used here as well, but with more algebraic complexity. The “viscoelastic correspondence
principle” to be presented in below is often more straightforward, but the superposition concept
is very important in understanding time-dependent materials response.

5.3 The viscoelastic correspondence principle

In elastic materials, the boundary tractions and displacements may depend on time as well
as position without affecting the solution: time is carried only as a parameter, since no time
derivatives appear in the governing equations. With viscoelastic materials, the constitutive or
stress-strain equation is replaced by a time-differential equation, which complicates the sub-
sequent solution. In many cases, however, the field equations possess certain mathematical
properties that permit a solution to be obtained relatively easily5. The “viscoelastic correspon-
dence principle” to be outlined here works by adapting a previously available elastic solution
to make it applicable to viscoelastic materials as well, so that a new solution from scratch is
unnecessary.

If a mechanics problem— the structure, its materials, and its boundary conditions of traction
and displacement — is subjected to the Laplace transformation, it will often be the case that
none of the spatial aspects of its description will be altered: the problem will appear the same, at
least spatially. Only the time-dependent aspects, namely the material properties, will be altered.
The Laplace-plane version of problem can then be interpreted as representing a stress analysis

5E.H. Lee, “Viscoelasticity,” Handbook of Engineering Mechanics, W. Flugge, ed., McGraw-Hill, New York,
1962, Chap. 53.
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problem for an elastic body of the same shape as the viscoelastic body, so that a solution for an
elastic body will apply to a corresponding viscoelastic body as well, but in the Laplace plane.

There is an exception to this correspondence, however: although the physical shape of the
body is unchanged upon passing to the Laplace plane, the boundary conditions for traction or
displacement may be altered spatially on transformation. For instance, if the imposed traction

is T̂ = cos(xt ˆ), then T = s/(s2+x2); this is obviously of a different spatial form than the original
untransformed function. However, functions that can be written as separable space and time
factors will not change spatially on transformation:

T̂ (x, t ˆ) = f(x) g(t)⇒ T = f(x) g(s)

This means that the stress analysis problems whose boundary constraints are independent of
time or at worst are separable functions of space and time will look the same in both the actual
and Laplace planes. In the Laplace plane, the problem is then geometrically identical with an
“associated” elastic problem.

Having reduced the viscoelastic problem to an associated elastic one by taking transforms,
the vast library of elastic solutions may be used: one looks up the solution to the associated
elastic problem, and then performs a Laplace inversion to return to the time plane. The process
of viscoelastic stress analysis employing transform methods is usually called the “correspondence
principle”, which can be stated as the following recipe:

1. Determine the nature of the associated elastic problem. If the spatial distribution of the
boundary and body-force conditions is unchanged on transformation - a common occur-
rence - then the associated elastic problem appears exactly like the original viscoelastic
one.

2. Determine the solution to this associated elastic problem. This can often be done by
reference to standard handbooks6 or texts on the theory of elasticity7.

3. Recast the elastic constants appearing in the elastic solution in terms of suitable viscoelas-
tic operators. As discussed in Section 5.1, it is often convenient to replace E and ν with
G and K, and then replace the G and K by their viscoelastic analogs:

E

ν

}
G

−→

{
−→ G

K −→ K

4. Replace the applied boundary and body force constraints by their transformed counter-
parts:

ˆ ˆT⇒ T

û⇒ û

ˆwhere T and û are imposed tractions and displacements, respectively.

5. Invert the expression so obtained to obtain the solution to the viscoelastic problem in the
time plane.

6For instance, W.C. Young, Roark’s Formulas for Stress and Strain, McGraw-Hill, Inc., New York, 1989.
7For instance, S. Timoshenko and J.N. Goodier, Theory of Elasticity, McGraw-Hill, Inc., New York, 1951.
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If the elastic solution contains just two time-dependent quantities in the numerator, such
as in Eqn. 54, the correspondence principle is equivalent to the superposition method of the
previous section. Using the pressure-vessel example, the correspondence method gives

pr2C r2
δr = → δr(s) = pC

b b

Since C = sCcrp, the transform relation for convolution integrals gives

r2 r2 r2 t

δr(t) = L
−1

(
sCcrp · p

)
= L−1

(
Ccrp · ṗ

b

)
=

b b

∫
Ccrp(t− ξ)ṗ(ξ) dξ

−∞

as before. However, the correspondence principle is more straightforward in problems having a
complicated mix of time-dependent functions, as demonstrated in the following example.

Example 14

The elastic solution for the radial expansion of a closed-end cylindrical pressure vessel of radius r and
thickness b is

pr2 ν
δr = 1−

bE 2
Following the correspondence-principle recipe, the asso

(
ciated

)
solution in the Laplace plane is

pr2
δr =

bE

(
N

1−
2

)
In terms of hydrostatic and shear response functions, the viscoelastic operators are:

9G(s)K(s)
E(s) =

3K(s) + G(s)

3K(s)− 2G(s)
N (s) =

6K(s) + 2G(s)

In Example 12, we considered a PVC material at 75◦C that to a good approximation was elastic in
hydrostatic response and viscoelastic in shear. Using the standard linear solid model, we had

(Gg −Gr)s
K = Ke, G = Gr +

s+ 1
τ

where Ke =1.33 GPa, Gg =800 MPA, Gr =1.67 MPa, and τ =100 s.
For constant internal pressure p(t) = p0, p = p0/s. All these expressions must be combined, and the

result inverted. Maple commands for this problem might be:

define shear operator

> G:=Gr+((Gg-Gr)*s)/(s+(1/tau));

define Poisson operator

> N:=(3*K-2*G)/(6*K+2*G);

define modulus operator

> Eop:=(9*G*K)/(3*K+G);

define pressure operator

> pbar:=p0/s;

get d1, radial displacement (in Laplace plane)

> d1:=(pbar*r^2)*(1-(N/2))/(b*Eop);

read Maple library for Laplace transforms

> readlib(inttrans);

invert transform to get d2, radial displacement in real plane

> d2:=invlaplace(d1,s,t);
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After some manual rearrangement, the radial displacement δr(t) can be written in the form

r2p0
δr(t) =

b

[(
1 1

+
4Gr 6K

)
−

(
1 1
− e−t/τc

4Gr 4Gg

) ]

where the creep retardation time is τc = τ(Gg/Gr). Continuing the Maple session:

define numerical parameters

> Gg:=800*10^6; Gr:=1.67*10^6; tau:=100; K:=1.33*10^9;

> r:=.05; b:=.005; p0:=2*10^5;

resulting expression for radial displacement

> d2;

- .01494 exp( - .00002088 t) + .01498

A log-log plot of this function is shown in Fig. 21. Note that for this problem the effect of the small
change in Poisson’s ratio ν during the transition is negligible in comparison with the very large change
in the modulus E, so that a nearly identical result would have been obtained simply by letting ν =
constant = 0.5. On the other hand, it isn’t appreciably more difficult to include the time dependence of
ν if symbolic manipulation software is available.

Figure 21: Creep response of PVC pressure vessel.
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7 Problems

1. Plot the functions e−t/τ and 1 − e−t/τ versus log10 t from t = 10−2 to t = 102. Have two
curves on the plot for each function, one for τ = 1 and one for τ = 10.

2. Determine the apparent activation energy in (E† in Eqn. 2) for a viscoelastic relaxation in
which the initial rate is observed to double when the temperature is increased from 20◦C
to 30◦C. (Answer: E† = 51 kJ/mol.)

3. Determine the crosslink density N and segment molecular weight Mc between crosslinks
for a rubber with an initial modulus E = 1000 psi at 20◦C and density 1.1 g/cm3. (Answer:
N = 944 mol/m3, Mc = 1165 g/mol.)

4. Expand the exponential forms for the dynamic stress and strain
(
σ(t) = σ∗0e

iωt, ε(t) = ε∗0e
iωt

and show that

)

σ
E∗

(t) σ0 cos δ σ0 sin δ
= = + i ,
ε(t) ε0 ε0

where δ is the phase angle between the stress and strain.

5. Using the relation σ = Eε for the case of dynamic loading (ε(t) = ε0 cosωt) and S.L.S.

material response
(
E = ke + k1s/(s+

1 )
)
, solve for the time-dependent stress σ(t). Useτ

this solution to identify the steady-state components of the complex modulus E∗ = E′ +
iE′′, and the transient component as well. Answer:

k
E∗

1 τ2
= e−t/τ

k1ω
2 k1ωτ

+ ke + cosωt− sinωt
1 + ω2τ2

(
1 + ω2τ2

) (
1 + ω2τ2

)

6. For the Standard Linear Solid with parameters ke = 25, k1 = 50, and τ1 = 1, plot E′ and
E′′ versus log ω in the range 10−2 < ωτ1 < 102. Also plot E′′ versus E′ in this same range,
using ordinary rather than logarithmic axes and the same scale for both axes (Argand
diagram).

7. Show that the viscoelastic law for the “Voigt” form of the Standard Linear Solid (a spring
of stiffness kv = 1/Cv in parallel with a dashpot of viscosity η, and this combination in
series with another spring of stiffness kg = 1/Cg) can be written

Cv
ε = Cσ, with C =


Cg +

τ s+ 1
τ



whe

( )
re τ = η/kv .
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Prob. 7

8. Show that the creep compliance of the Voigt SLS model of Prob. 7 is

Ccrp = C
−

g + Cv
(
1− e t/τ

)
9. In cases where the stress rather than the strain is prescribed, the Kelvin model - a series

arrangement of Voigt elements - is preferable to the Wiechert model:

Prob. 9

where φj = 1/ηj = ε̇j/σdj and mj = 1/kj = εj/σsj Using the relations ε = εg + j εj,
σ = σsj + σdj , τj = mj/φj , show the associated viscoelastic constitutive equation to

∑
be:

ε =


m

mg +
∑

j
σ

τ s+ 1
j j τ


j

and for this model show the creep


compliance to

(
be:

)

ε(t)
Ccrp(t) = = m −

g +
σ0

∑
mj

j

(
1− e t/τj

)

10. For a simple Voigt model (Cg=0 in Prob. 7), show that the strain εt+∆t at time t + ∆t
can be written in terms of the strain εt at time t and the stress σt acting during the time
increment ∆t as

εt+∆t = C σt
(
1− e−∆t/τ

)
+ εte−∆t/τv

Use this algorithm to plot the creep strain arising from a constant stress σ = 100 versus
log t = (1, 5) for Cv = 0.05 and τ = 1000.

11. Plot the strain response ε(t) to a load-unload stress input defined as
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0

σ


, t < 1

(t) =

 1, 1 < t < 4.5
− 1, 4.5 < t < 5 0, t > 5

The material obeys the SLS compliance law (Eqn. 30) with Cg = 5, Cr = 10, and τ = 2.

12. Using the Maxwell form of the standard linear solid with ke = 10, k1 = 100 and η = 1000:
a) Plot Erel(t) and Ecrp(t) = 1/Ccrp(t) versus log time. b) Plot [Ecrp(t) − Erel(t)] versus
log time. c) Compare the relaxation time with the retardation time (the time when the
argument of the exponential becomes −1, for relaxation and creep respectively). Speculate
on why one is shorter than the other.

13. Show that a Wiechert model with two Maxwell arms (Eqn. 34) is equivalent to the second-
order ordinary differential equation

a2σ̈ + a1σ̇ + a0σ = b2ε̈+ b1ε̇+ b0ε

where
a2 = τ1τ2, a1 = τ1 + τ2, a0 = 1

b2 = τ1τ2 (ke + k1 + k2) , b1 = ke (τ1 + τ2) + k1τ1 + k2τ2, b0 = ke

14. For a viscoelastic material defined by the differential constitutive equation:

15σ̈ + 8σ̇ + σ = 105ε̈+ 34ε̇+ ε,

write an expression for the relaxation modulus in the Prony-series form (Eqn. 36). (Answer:
Erel = 1 + 2e−t/3 + 4e−t/5)

15. For the simple Maxwell element, verify that

∫ t
Erel(ξ)Dcrp(t− ξ) dξ = t

0

16. Evaluate the Boltzman integral

σ(t) =

∫ t
Erel(t− ξ)ε̇(ξ) dξ

0

to determine the response of the Standard Linear Solid to sinusoidal straining (ε(t) =
cos(ωt))

17. Derive Eqn. 48 by using the Arrhenius expression for relaxation time to subtract the log
relaxation time at an arbitrary temperature T from that at a reference temperature Tref .

18. Using isothermal stress relaxation data at various temperatures, shift factors have been
measured for a polyurethane material as shown in the table below:
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T, ◦C log10 aT
+5 -0.6
0 0
-5 0.8
-10 1.45
-15 2.30
-20 3.50
-25 4.45
-30 5.20

(a) Plot log aT vs. 1/T (◦K); compute an average activation energy using Eqn 48. (An-
swer: E† = 222 kJ/mol.)

(b) Plot log aT vs. T (◦C) and compare with WLF equation (Eqn. 50), with Tg = −35◦C.
(Note that Tref = 0 = Tg.)

19. After time-temperature shifting, a master relaxation curve at 0◦C for the polyurethane of
Prob. 18 gives the following values of Erel(t) at various times:

log(t,min) Erel(t), psi

-6 56,280
-5 22,880
-4 4,450
-3 957
-2 578
-1 481
0 480

(a) In Eqn. 36, choose ke = Erel(t = 0) = 480.

(b) Choose values of τj to match the times given in the above table from 10−6 to 10−1

(a process called “collocation”).

(c) Determine appropriate values for the spring stiffnesses kj corresponding to each τj
so as to make Eqn. 36 match the experimental values of Erel(t). This can be done
by setting up and solving a sequence of linear algebraic equations with the kj as
unknowns:

6∑
kje
−ti/τj = Erel(ti)− ke, i = 1, 6

j=1

Note that the coefficient matrix is essentially triangular, which facilitates manual
solution in the event a computer is not available.

(d) Adjust the value of k1 so that the sum of all the spring stiffnesses equals the glassy
modulus Eg = 91, 100 psi.

(e) Plot the relaxation modulus predicted by the model from log t = −8 to 0.

20. Plot the relaxation (constant strain) values of modulus E and Poisson’s ratio ν for the
polyisobutylene whose dilatational and shear response is shown in Fig. 17. Assume S.L.S.
models for both dilatation and shear.
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Prob. 19

21. The elastic solution for the stress σx(x, y) and vertical deflection v(x, y) in a cantilevered
beam of length L and moment of inertia I, loaded at the free end with a force F , is

F (L− x)y Fx2
σx(x, y) = , v(x, y) = (3L− x)

I 6EI

Determine the viscoelastic counterparts of these relations using both the superposition and
correspondence methods, assuming S.L.S. behavior for the material compliance (Eqn. 30).

Prob. 21

22. A polymer with viscoelastic properties as given in Fig. 17 is placed in a rigid circular die
and loaded with a pressure σy = 1 MPa. Plot the transverse stress σx(t) and the axial
strain εy(t) over log t = −5 to 1. The elastic solution is

νσy (1 + ν)(1− 2ν)
σx = , εy = σy

1− ν E(1− ν)
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A Laplace Transformations

Basic definition:

Lf(t) = f(s) =
∫ ∞

f(t) e−st dt
0

Fundamental properties:

L[c1f1(t) + c2f2(t)] = c2f1(s)c1f2(s)

L
[
∂f

∂t

]
= sf(s)− f(0−)

Some useful transform pairs:

f(t) f(s)

u(t) 1/s
tn n!/sn+1

e−at 1/(s + a)
1 (1− e−at) 1/s(s + a)a

t
a −

1
a2
(1− e−at) 1/s2(s+ a)

Here u(t) is the Heaviside or unit step function, defined as

{
0, t < 0

u(t) =
1, t ≥ 0

The convolution integral:

Lf · Lg = f · g = L
[∫ t

f(t− ξ) g(ξ) dξ
0

]
= L

[∫ t
f(ξ) g(t− ξ) dξ

0

]
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