3.185 Problem Set 2

Diffusion

Solutions

1. Decomposition of poly(vinyl chloride)

(a)

This time we have the conservation equation with generation, so the generation term is G times
the volume of a shell between r and Ar. That volume is approximately 27rLAr (the cylinder
area times the shell thickness), so we start with

0=~ (Jr-27mrL), + (Jr-27rL), A, + G- 27rLAr

Again we divide by 2n LAr and let Ar go to zero:
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Substituting Fick’s first law gives us the differential equation:
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for a constant A. Now divide by r and rearrange to give
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and integrate both sides for the general solution
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where once again A" = 5.
Because the rod is symmetric about its axis, the concentration everywhere around the axis will

be the same, so there will be no flux through the center. This means that at the center, the slope

is zero:
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So A" = 0. You could also say that the concentration is finite at the center, therefore A’ must be
zero. On the surface:
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The solution is:
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The maximum concentration is the concentration at r = 0:
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If we divide the maximum concentration by the surface concentration, we get:
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This means that if =22 is small, == will be very close to one, so the HCI concentration will
DCrci,s Cuci,s

be very uniform. If it is large, the maximum concentration will be much larger than that at the
surface of the rod.

2. Encapsulated liposomes for long-term drug delivery

(a)

The “thickness” of the encapsulant is R, — Ry = 0.01 cm, so
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This is short compared to the service life of the device (for any definition of “long-term”), so we
can safely assume quasi-steady-state diffusion in the encapsulant.

It’s worth pointing out that “lipid bilayer membrane” means two molecular layers, so the mem-
brane is really thin (i.e. submicron, ask a biomat person for molecular details).
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The universal conservation equation:
accumulation = in — out + generation

Steady state indicates accumulation=0, there should be no generation term. We’ll use a spherical
“shell” of thickness Ar:
0=[A4-J:], = [A- Tl i,

0= [47rr2 - JT]r — [47r7"2 - Jr]
Divide by 4w Ar, let Ar go to zero:
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Substitute J, = —D%:
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For constant D, we divide by D and are left with:
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Note the similarity to the differential equation in problem 1la.

Start from the equation in part 2c and integrate:
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(A is an arbitrary constant, negative here because we’ll make it positive below.) Divide by r? and
integrate again to yield the general solution:
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Now apply the boundary conditions from above:
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There are a couple of ways to go from here. I like to subtract the second from the first to eliminate

B, this gives
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Plugging this A and B into the general solution and dividing by C> gives:
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We begin with the flux:
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The area A is simply 4712, so when we multiply them the r2s cancel:

JTA: Zi’/r.DC'lz
R~ Ro

This is independent, of r.



If this is diffusion-limited, then C5 ~ C, and:
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Plugging in the problem parameters gives us:
4 - 1077 3
JA= O =25 x 1078y

0.0lcm ~ 0.02cm

Since (] is in %gs or % etc., this gives the overall rate of drug delivery from the device—if it’s
diffusion-limited.

(f) The flux equation was given, and here C> = 0 modifies it slightly:
Jr = hD(Cl — 02) ~ hDC’1

Because the membrane is at R;, the relevant area A is 47 R?, which gives us:
3
Jp - A=hpCy - 47R2 = 47 - (0.01cm)? - 1.4 x 10—6%“01 = 1.8 x 10—9‘3%01

(g) Because the answers to part 2f is so much lower than that to part 2e, the membrane definitely

controls the rate of drug delivery. The actual rate of delivery will thus be close to what’s predicted
in part 2f, or about 2 x 10’9%01. That’s the end of the story as far as 3.185 is concerned, and
the answer this question was looking for.
However, if you read the reference given in the problem, you’ll notice that the drug delivery rate
for the encapsulated liposomes is actually higher than for the bare liposomes. This is because the
encapsulation process weakens the membrane so that it is not as effective a barrier as without the
encapsulant,.

3. Nitriding of an iron thin film

Why would you want to make such a film? I’ve no idea...

(a) This has a zero initial condition, and fixed concentration boundary condition at = 0 (the exposed
top surface of the film); so at least to start, it’s an erfc. Then when the nitrogen in the tail of
the erfc reaches the bottom of the film, it hits what we’re assuming is an impermeable wall, a
no-flux boundary condition. So the derivative is always zero there at the Fe-Si interface, and the
concentration rises until reaching a steady-state with uniform nitrogen concentration across the
iron.
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Approximate nitrogen concentration profilein the iron film at several times.

(b) As mentioned above, this is an erfc solution:

xr
C =Cserfc | —— | .
e”(wm)



()

For this, we need to solve the erfc solution from part 3b for z, and set C' to one-half of Cs to find
at what depth the concentration has that value:

X
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z = 2v/Dterfc™"(0.5).

From the erf table (in the diffusion handout), erfc~1(0.5) is about 0.48, so at t = 1 second,
x = 9.6 x 10~%cm, or just under one micron. At ¢ = 4 seconds, z = 1.92 x 10~ %cm, just under two
microns. So the depth of the top layer where C' > 0.5Cs gets thicker proportional to the square
root of time.

This ceases to be valid when the film is no longer semi-infinite, so for film thickness L, the validity
criterion is:
L2
< —.
— 16D
For L = 10um = 10~3cm and D = 10_8%, this gives ¢t = 6.25 seconds.

This is a bit tricky. We have a film of finite thickness, which right away suggests the Fourier
series as a solution. But we’ve only seen that solution in lecture referring to finite systems with
fixed concentration on both sides, using half of one square wave period; here we have one fixed
concentration boundary condition and one zero-flux condition.

t

The solution is to use one-quarter of a square wave period, with Cy = C; to get the surface concen-
tration right, and C),4,; = 0 to get the initial condition, since it’s below the surface concentration.
The half-period is twice the film thickness 2L which is 20 pm (since we’re using one-quarter of
the period for L).

At long times, the series terms with n > 1 decay rapidly, so we’re left with the n = 1 term:

4C, m2Dt\ . 7z
C = Cs — T exp <—W> Sin (ﬁ)

We want to calculate t when C(z = L = 10um) = 0.9C,:

4C w2Dt\ . [~wL
0.9C, =C, — - exp <— (2L)2> sin <E>

Note sin(7/2) = 1 so that part drops out.




