3.185 Problem Set 8

Drag Force, Advanced Heat and Mass Transfer

Solutions

1. Settling of magnesia particles in water

(a)

For a sphere of diameter d in a fluid, the net gravity/buoyancy force is given by:
13
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where p; is the density of the sphere, and p that of the fluid. When the sphere is rising or sinking
at its terminal velocity V', that force is exactly balanced by the drag force, given by:
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where the friction factor f in Stokes flow is:
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resulting in a drag force of:
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We set this equal to |Fy, — Fp| and solve for V:
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Set V' = 10cm/1min = 52 and solve for d:
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All of the particles larger than 33um across will sink faster than that, and reach the bottom within
one minute.

The Reynolds number is:
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This is below 0.1, so we're safely in the Stokes law régime.



2. Drag force on a flat plate

(a)
(b)

Drag force is proportional to the width and to the square root of the length, so it is lower for the
longer length and narrower width, i.e. 1m edges parallel to the wind.

First we need to know whether flow is laminar or otherwise, which comes from the Reynolds
number:
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Since this is below 10, laminar sounds good. Also, the ratio of boundary layer thickness to
length % is about 0.11, so the z >> § assumption holds and the boundary layer analysis with it.
Whether 11 cm is much less than 25 cm (so we can neglect edge effects) is possibly arguable, but
we’ll accept it for an estimate.

Now we have the dimensionless correlation for drag force due to laminar flow past a flat plate:
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This is the force on one side of the plate; the total force is twice this, about 1.5uN. That’s pretty
small!

The wind velocity is 1000 times larger than before, so Rey, is 1.9 x 10%, and flow is transitional
over much of the plate. The ratio % (using the turbulent flow correlation) is now about 0.021,
so we have a thinner boundary layer than before. (If flow were still laminar, it would be about
30 times thinner than in part 2b due to the larger velocity, so the turbulence effectively makes it

about 10 times thicker than a laminar boundary layer would be.)
There are two different correlations for the drag force. First the one from P&G p. 83:
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And from BSL p. 203:
.14
= O—OS =81x10"?
Rej

So the two friction factors are a factor of two apart!
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The force is calculated using the same F; = fK A equation as in part 2b, and we get
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(or about twice this using the BSL friction factor correlation); again double this for both sides of
the plate. This is still pretty small.

3. Turbulence and Mixing in a Tube

(a) The laminar velocity profile is parabolic, and the turbulent profile looks somewhat like pseudo-

plastic flow, since there’s less mixing, and lower turbulent viscosity, and steeper velocity gradient
near the tube walls away from the center. Your sketches should have looked something like:
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(b) Start by calculating the average velocity, to get the Reynolds number and friction factor:
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At this Reynolds number, and the dimensionless roughness ¢/d = 10~°m/1072m = 1073, the
graph provided gives a friction factor of approximately 5.5 x 1073,

Next we set the drag force magnitude equal to the pressure force, since they’re equal and opposite,
and solve for AP:
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(c) The Hégen-Poiseuille equation states:
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This is used for laminar flow, so in this turbulent case, it gives a good estimate of the average
turbulent viscosity in this tube. Just substitute u; for u and solve for py:
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So the turbulent viscosity is more than forty times the molecular viscosity of 10*3%%.

(d) Use the turbulent Prandtl number of one to estimate the turbulent diffusivity:
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This mixes across the tube in approximately the diffusion timescale of the diameter (or radius is

okay):
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This is the time required to mix (but not homogenize) the substance across the width of the tube,

and is nearly the time required to travel the length of the tube!

tes = 2.28seconds



(e) The power is the flow rate times pressure drop: power = QAP and the energy dissipation rate per
unit volume is simply the power dissipated divided by the volume: € = power/V. If we assume
that all of the power goes into turbulent dissipation, this gives us:
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Since one newton-meter is a joule, and a joule per second is a watt, this is 2.27 x 106%.

(f) The expression for turbulent microscale was given on the equation sheet:
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The dissipation rate € (not the surface roughness €) comes from part 3e, and the viscosity used
is the molecular viscosity (not the turbulent viscosity) because molecular viscosity is turning
mechanical power into heat energy in these small eddies, turbulent viscosity mixes the fluid at
much larger lengthscales. So we have:
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About five microns.

(g) Turbulence mixes the substance to the lengthscale in part 3f, then molecular diffusion has to
homogenize it the rest of the way. The timescale for this second part is simply the steady-state
diffusion time for the small eddies:
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So in this case, the substance is mixed across the tube in about two seconds, and diffuses on the
eddy lengthscale it about two tenths of a second. It should be completely homogenized within
about 2.5 seconds, which for fluid travelling 30 m at 12.7 m/s is about the amount of time the
fluid spends in the tube.

4. Chemical Vapor Deposition

(a) The mass transfer Prandtl number is given by:
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where M is the molar mass. Since 1latm=101300 Pa, this pressure is 10130 Pa; Pascals are
equivalent to Joules per cubic meter. This therefore evaluates to:
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This is not far from one, which is not atypical for a gas (yes, that was a double-negative).

(b) With a flow rate of 0.2‘“?3, and box width and height of 2mx0.5m, the average velocity is 0.2m/s.
The Reynolds number is then:
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= 325.

Looks like flow will remain laminar.
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The velocity boundary layer thickness will grow as:

vxr
b0 = 5.0,/ —,
\/;

for which we can use ugyy as Uy; this gives a maximum thickness of 0.27m at z = 2m. The
velocity boundary layers will just meet at the end of the reactor.

With a Prandtl number just above one, the concentration boundary layer will be somewhat smaller
than the velocity boundary layer, but our expression for relative boundary layer thickness won’t
quite be right. So we can estimate that the velocity and concentration boundary layers will look
something like:
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Though the concentration boundary layer thickness correlation is not quite right, the high-Pr
Nusselt number correlation is accurate down to a Prandtl number of 0.5, so we can use that:

Nu, = 0.332Rel/?Pr!/3,
along with expressions for the local mass transfer coefficient hp, and diffusive flux:
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The molar density of the gas mixture is P/RT, so with 1 mol% silane, we can use one percent of
the overall pressure as the silane partial pressure and set Coo = Psir, /RT. The problem states
that we can estimate Cs = 0. The results are summarized as follows:

Distance z | Re; Nu, hpa Jyly=0
0.10m 65 3.08 6.17x107°m/s 1.5 x 10~ mol/m%sec
0.30m 195 5.34 3.56 x 10~°m/s 8.68 x 10~°mol/m?sec

Note that this close to the entrance, we're really pushing the envelope of validity of this solution
(since d¢ < x is not so valid). Call it a rough estimate.

We can just divide the flux by molar density of the solid to calculate the deposition rate: % =

% At 10 c¢m, this will be 1.7 nm/sec; at 30 cm, 0.97 nm/sec. This means a 20 cm wafer placed
10 cm from the entrance (from z = 10cm to z = 30cm) will have a 70% variation in deposition

rate across it, which is a huge variation!

There are various ways to make the deposition more uniform. A common one is to place the
substrates on an incline tilting upward about 30°, so the velocity increases with x, flattening out
the concentration boundary layer a bit. One can also run under conditions more likely to be
reaction-limited (e.g. at lower temperature), so the silane concentration in the gas will be roughly
uniform throughout the chamber and right up to the wafers, making deposition roughly uniform.
But the real answer is to ditch this reactor design, and go to something very different. Many
modern reactors use stagnation flow produced by something like a shower head directing reactant
gas at an individual wafer, or individual wafer rotation, to achieve near-uniform velocity and



concentration boundary layers. (In response to a similar question on last year’s final, a student
suggested “Rotisserie CVD” with wafers moving around like chickens in an oven...) Because it
processes just a single wafer per chamber, this equipment is more expensive, but is worth it to
deliver uniformity to within a few percent across each wafer.



