3.185 Final Exam

Adam Powell

Solutions
Part A: Closed Book
1. Time Scale and Fully-Dveloped Flow
(a) These timescales are respectively:
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(b) The distance traveled at velocity uq, over time tgg is just their product:
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(c) The real entrance length, which is approximately
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is two orders of magnitude shorter than that derived in part 1b. This is for two reasons:

e The fully-developed flow profile looks similar to the profile when the boundary layers meet
each other, so we don’t need to wait for full equilibration all the way across the channel, just
for the top and bottom to influence the middle. If the boundary layer solution were an erf,
we’d need the timescale of erf validity for half of the thickness, which is:
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e The Blassius boundary layer solution grows more than 25% faster than the erf solution (5.0
vs. 3.6), because of convective momentum transfer away from the sides and toward the center
of the stream.

All of this adds up to an entrance length 100 times shorter than the estimate in part 1b.
2. Biot and Nusselt Numbers

(a) For heat transfer, the Biot and Nusselt number are given by:
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There are two important differences between these two expressions:



e The Biot number uses the solid thermal conductivity, and the Nusselt number the fluid
conductivity.

e The length scale L in the Biot number is the thickness of the solid, in the Nusselt number
it’s the length of the solid plate.

(b) The Biot number is a ratio of resistances to heat transfer by conduction through a solid and
convection in a fluid in series:
resistance due to conduction  L/ksu hL

1 = . . = = .
resistance due to convection 1/h ksor

The Nusselt number is approximately the ratio of plate length to thermal boundary layer thickness:
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Since the heat transfer coefficient is roughly h ~ ky;/d7, the boundary layer thickness is roughly

dr ~ ki /h, so we can write:
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Thus despite their apparent similarity, the Nusselt and Biot numbers are thus very different
animals, describing completely different ratios in different phenomena.

Nu =

3. Floating Bubbles Out of Glass

(a) The bubble is floating up, so in its frame of reference the fluid is flowing down:

The
Bubble

(b) This is just like problem set 8 #1, but slightly simpler and with a different constant:
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(¢) The velocity which guarantees removal is the depth divided by the time. Solve for d and calculate,
using that velocity:
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d= =8.0 x 10 *m.

(d) Since V o d2, if we cut d in half, the velocity will be one quarter of what it was, so it will take
four times as long to float out the bubbles 0.4mm in diameter.



(e) The larger bubbles will have larger d and larger U and thus a larger Reynolds number, so if they’re
Stokes then both are:

pUd _ 3200.% - G0 -8.0 x 10~*m

T =4.3x1073.
w 1.0-£

Re =

This is easily within the Stokes flow régime.
4. Estimating Fluid Velocity Using Heat Transfer

(a) With a Prandtl number of 10, the velocity boundary layer is about v/10 ~ 2 times thicker than
the thermal boundary layer:
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(b) To calculate the average heat transfer coefficient hy,:

e Calculate the Reynolds number from the free stream velocity and plate length: Rer =
pUso L/ .
e Calculate the Prantl number from the fluid properties: Pr=v/a = uc,/ky.
e Use a correlation to find the Nusselt number from the Reynolds and Prandtl numbers: Nuy, =
f(ReL, Pr) .
e The average heat transfer coefficient comes straight from the Nusselt number: hy, = Nurks;/L.
(c) The fourth assumption says that the solid conductivity is so high that in spite of large differences
between the heat transfer coefficients at the plate leading and trailing edges, the temperature
along the bottom of the plate is roughly uniform. If this is the case, then even a Biot-like number
using the plate length would be small, so the Biot number using its thickness is extremely small.
The plate temperature is pretty uniform everywhere, so T ~ Tj.

(d) This is a bit of a spin on part 4b: you know the heat flux, and want to find h;, and thus Us,. The
steps should look like:
e Calculate the heat flux from the top of the plate to the air: ¢ = hair (To — Tair)-
e Using Ts = Ty, estimate the lower average heat transfer coefficient hy, = q/(Ts — T0).
e Calculate the Nusselt number from this heat transfer coefficient: Nuy, = hr L/ky;.

e Reverse the Nusselt number correlation to calculate the Reynolds number from the Nusselt
and Prandtl numbers: Nug = f(Rer,Pr) = Rer = f'(Nug,Pr). This is not hard for laminar
flow (which the problem says you may assume), but might be if flow were turbulent.

e Calculate the free stream velocity from the Reynolds number: Uy, = Reppu/(pL).
5. Mass Transfer Boundary Layers

(a) This should have looked somewhat like:
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(b) With a Prandtl number of 1000, the laminar boundary layer thickness ratio requested would be:
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(c) The turbulent Prandtl number v;/D; is about 1, so the turbulent diffusivity is approximately
Dy ~ i/ p.
(d) The important things to show on your sketch are:
e the transition between laminar sublayer and turbulent layer near the plate (small y),
e the end of the turbulent boundary layer on top (large y),

e the diffusivity outside of the turbulent layer (in the laminar sublayer and outside the boundary
layer) is the (low) molecular diffusivity,

e the effective diffusivity in the turbulent layer is much higher.

Based on these, your sketch should have looked something like (not to scale):
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Part B: Open Book

1. Shear Stress in CD Injection Molding

(a) We need a general solution to:
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where A(6, z) is a kind of partial integration constant. We can reduce this to A(z) by the assump-
tion of axial symmetry.



(b)

The average velocity is the flow rate divided by the cross section area, the latter of which is 27rd:
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Using this and the thickness gives a Reynolds number of

uﬂv

= 0.0796?.

_ pua,d 120085 .0.0796™ - 0.001m

7 =48 x 1074
% 2005

Re

This will produce Stokes flow, which means convection will be totally insignificant, and the
purOu, [Or term can be eliminated.

The pressure field p = f(r) — pgz tells us that the r-derivative is Op/0r = f'(r), that is, it’s not
a function of z or #. Based on this, the simplified r-momentum equation gives us:
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where B(r,0) and C(r,0) can again be turned into B(r) and C'(r) by the axial symmetry assump-
tion.

The solutions are equal to each other:
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+ B(r)z + C(r).

This can work if B(r), C(r) and f'(r) are replaced with B/r, C/r, and D /r respectively, where
D/r is the pressure derivative f'(r). The general result is:
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The problem didn’t ask for this, but we can most easily fit the boundary conditions by choosing

z = 0 halfway between the top and bottom of the mold, so that B = 0. With thickness 4, the
boundary conditions are: z = +46/2 = u, = 0; this plugs into the above solution as follows:
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Finally, from the flow rate (), which is the flow rate through a cylinder of radius r from z = —§/2
to z = §/2, we can get the last constant D:
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This gives us an equation for u,.:
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At last, u,. is given by:
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The problem didn’t ask again, but if you were interested, this gives you the pressure distribution:

f'(ry=D/r= f(r)=Dlnr+ E = —%lnerE,
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where FE is another integration constant.
(e) The most straightforward way to calculate the shear stress is to differentiate the above equation
with respect to z. But as mentioned, the problem didn’t require this.

It sufficed to note that u,. is parabolic in z, as shown in part le¢, with a maximum velocity related

to average velocity by ., = %umaz as in channel flow. Again with z halfway between the plates,

we can fit the parabola to the boundary conditions:
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What we want is the shear stress, which comes from the derivative of u, with respect to z:
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At r = 2cm, ugy = 0.0398m/s (half the value of part 1b, since u, o 1/7), S0 Umaz = 1.5ugy =
0.0597m/s. Putting this and the process parameters into the above equation gives the shear stress:

4-200XE . 0.05972 N
_ m-s s _ 4
Tor = B = 4.8 x 10" —.

Not such a big stress, but over many cycles can wear nickel features at micron lengthscales.

2. Ladle Metallurgy I: Scaleup of a Lab Design

Note: this 1/100-scale miniature ladle is really too small to work with: among other things, surface
tension would play a huge role, and could make it hard to get any liquid metal into the tube at all.
But the large difference in scale was necessary to illustrate the qualitative change in flow conditions
from laminar and fully-developed to inviscid where Bernoulli applies.

(a) Since we have laminar fully-developed flow through a tube, what we want is the Higen-Poisseuille
equation plus gravity. Since pg. takes a similar place in the Navier-Stokes equations to —dp/0z,

we can add it to AP/L:
Q = _WR4 E +
=S\ )



(b)

The pressure drop AP will just be pghy, and the tube length is hs, so the flow rate will be:
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This may seem miniscule in MKS units, but in cgs it’s about 1/4 ¢cm3/second.

To test for laminar flow, use the Reynolds number:
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Flow is indeed laminar, and at this Reynolds number, the entrance length is about six times the

diameter, or 5mm, so flow in 3/4 of the tube is beyond the entrance length and flow is fully
developed.

Now we have much larger velocity and tube diameter, so it’s likely that the Bernoulli equation
is what we need; results for just this geometry were derived in class (just points 1 and 4 from
lecture are relevant here, which are top of the liquid steel and bottom of the tube):

(KE+P+PE)top = (KE+P+PE)bottom-

Taking z = 0 at the bottom of the tube, with P = P, at both locations, gives:
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V = /2g(h1 + ha) = \/2 : 9.8?2(2m +2m) = 8.85?.

The flow rate is then this times the cross section area (5 x 10~m?) which is 0.045"‘?3, one cubic
meter with seven tonnes of liquid steel every 20 seconds.

At the tube exit, the Reynolds number is:
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Flow is definitely turbulent, so use that correlation for the boundary layer thickness:
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about 2.5 cm. This is just under 1/3 of the diameter, which is kinda pushing the limits of this
methodology: we can’t really say that most of the fluid has no turbulence or shear. There will
therefore be more resistance to flow than Bernoulli allows, and somewhat lower flow rate than
was calculated above.

Nonetheless, the researchers who used laminar flow equations in this scaled-up case were grossly
underestimating the resistance to flow.



3. Ladle Metallurgy II: Natural Convection

(a) The Prandtl number calculation should have preceeded any boundary layer sketching, as it would
have shown that Pr< 1 so the velocity and thermal boundary layers are about the same size. In
any case, your sketch should have looked something like:
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(b) First the Grashof number, using the liquid metal height as the length scale:
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The Prandtl number is:
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The Grashof-Prandtl product is then 3.5 x 10'°, which is above 10° so flow is turbulent.

(c) The GrPr product puts this solidly in the 10? — 10'2 régime where we can use the turbulent flow
correlation in Adam Nolte’s handout:

Nug, = 0.245Gr2/*Pr7/13(1 + 0.494Pr>/3)=2/% = 0.245 - 3.0 x 10* - 0.443 = 3237,
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This is a factor of sixty larger than a typical correlation for air, and even four times bigger than

the 6000 number we used for h in water in test 1. Liquid metals are like that.

(d) With the boundary layer flowing down the sides of the ladle and to the bottom, when the gate
is opened, the cooler metal from the boundary layers will exit first, followed by the hotter metal
from the interior. That the flow rate down the boundary layers is similar to the flow rate through
the nozzle means that this effect is quite significant, and as a result, thermal management in the
downstream processes (tundish and continuous caster) can be very difficult.
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4. This essay turned out to be harder than I thought because people had difficulty understanding what it
was asking for. The opening process description was straightforward enough, but for the main “guide”
step-by-step part, this was looking for an outline somewhat like those you wrote in problems 4b and
4d in Part A of the exam.



