3.185 Test 1

Diffusion, Heat Conduction

Solutions

1. Write your name on all of your answer booklets

Would you believe someone got this wrong last year? Like I’'ve been saying, this year’s class is so much
better...

2. Macromolecule diffusion into muscle tissue

(a) Start with the unsteady spherical diffusion equation from the equation sheet:
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Steady-state implies 0C/0t is zero, and without other information, we can ignore generation,
leaving;:
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Cancel the 1/r? up front, and substitute C' = A/r + B, and simplify:
0 (,0 (A 0 ([, A _ 0 .
o <7“ o <? +B>> =5 (r ( = +0>> = 87“( A) =0.
So it works.

(b) Substitute the boundary conditions into C' = A/r + B; at r = o0, C' = 0:
A
0=—+B=B=0,
00

then at r = 0.5mm, C' = Cjy:
A

- 0.5mm

Co = A =Cp-0.5mm.

The solution which fits these boundary conditions is thus:

C— Co - 0.5mm.
T
(c) Set C > Cy/2, 50 Cp/2 < C, and solve for r:
Co/2 < Cy -07:5mm

r <2-0.5mm = Ilmm

So C' > Cy/2 where r < 1lmm, and this region is a sphere with twice the diameter of the device.



(d) In steady state, there will be no change to the size or shape of this region, it will still be a sphere
with twice the diameter of the device.
This is a bit counter-intuitive, as the initial unsteady behavior will be quite different, the drug will
spread rapidly along the direction of the cells and slowly across them. But steady-state will be
rapidly reached in that longitudinal direction, then slowly in the transverse direction, eventually
becoming spherically symmetrical like the isotropic case.
One way to think of this is that the r-direction diffusivity D,, depends on the angle ¢ away from
the direction of muscle cells (where the angles ¢ = 0 and ¢ = = (180°) are parallel to the cells,
and ¢ = 7/2 (90°) is perpendicular to the cells, but not on # (longitude-type angle around the
cells) or . So parallel to the cells, D,.(¢ = 0) = D,.(¢ = m) is large; perpendicular to them,
D,.(¢ = 7/2) is small; at a 45°angle, D,..(¢ = w/4) is somewhere between the other two.
Then if we try C = A/r + B in the modified diffusion equation, it still works:

o (0005 ) = 5 (#D0t0) (-5 +0) ) = 5 Dn(0)) =0,

For those interested in even more details, they go something like this. In an isotropic medium,
the diffusivity is a scalar. In an anisotropic medium, it is a tensor, so Fick’s first law goes like:
Ji = =Dy;Cj,

where D;; is the diffusivity tensor and C'; the concentration gradient (in indicial notation). If we
point the z-axis in the direction of the muscle cells, and the z and y axes in orthogonal directions,
then the diffusivity tensor will look like:

D, 0 0
Dy={ 0 DL 0 |,
0 0 D

where D is the low diffusivity across the cells and D) is the high diffusivity along the cells. So
J. is faster for a given 0C'/0z than J, would be for the same 0C/0x.
(e) There are multiple potential complicating factors, any one of which would receive full credit:
e Blood flow carries the drug around, changing the shape significantly, by convection.
e The muscle contracts and extends, changing its shape, also effectively a convection mechanism.
e The drug is metabolized or otherwise broken down by the body by chemical reactions,
macrophages, etc., resulting in nonzero generation.
e Non-uniformities in the muscle such as fluid regions, or else muscle damage or scar tissue due
to the implantation process, results in non-uniform diffusivity (not only anisotropic).

3. Heat Transfer in Resistance Welding

(a) With a fixed amount of excess heat deposited in a thin layer at the junction, and that heat
diffusing out along the lengths of the rods, this looks like the shrinking Gaussian:
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(b) At very short time scales, we have no idea what the temperature distribution looks like. At
moderate to long time scales, we can use the Shrinking Gaussian solution, which was given on the

equation sheet:
(TO — TZ)(S .’L'2
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(c) Okay, so we have the energy per unit cross-section area of weld, and we need something like Tp —T;
and 4, both of which are unknown. To get there, we can use the relationship between temperature
change and volumetric enthalpy density change:

AH
AH = pc, AT = AT = —
PCp

Here when we divide enthalpy per unit area by pc,, we get something interesting:

3 x 10°
27004 - 9

J
m? — =121K-m

These units K-m are exactly the units of (Tp —T;)d. In fact, just as in diffusion the area under the
shrinking Gaussian represents the total solute content, which is fixed, the area under the thermal
shrinking Gaussian represents the total heat content per unit cross-section area, which is fixed.
Because § represents half of the thickness of the original heated region in this formulation, we
need to use half of the energy for (T — T;)d, and can then look for T' at x = 0:
0.606K -
T = 40°C + n exp(—0) = 40°C + 35°C = 75°C.
\/ 238 W
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(d) The maximum temperature is 35°C above the temperature of the rest of the rod. To calculate
the width where temperature difference is at least half that, we need only calculate where:

238
27005 - 9172

2 = datln(2) = =2 - 1second - In(2) = 0.016m.

This is the distance along the rod from = = 0 where this is satisfied, so the full length of this
region in both directions from the weld is twice this, or about 3.2 cm.

4. Time scales (25 pts)

(a) The time scale for diffusive or conductive steady-state is reached when gradients in the concen-
tration or temperature field no longer lead to changes in that field with time.

L? 2 k
Diffusion : tsg = —; Heat Conduction : tg¢ = —, where a = —.
D o PCp

(b) The Biot number is given by kL/D or hpL/D for diffusion, and hL/k for heat conduction. For
a given material (D or conductivity k) and geometry (L), lower Biot number means lower k
(reaction rate constant), hp or h (mass/heat transfer coefficient). This added resistance to heat
flow requires longer time to reach steady-state with the surroundings, so lower Biot number implies
longer timescale.



()

First, the Biot number for one-sided cooling is:

hL Yz - 0.
Bi= —=—mXK_"" —0067
k 30
So cooling is convection-limited, and we can assume Newtonian cooling.
The Newtonian cooling was given as:

T-Tn _, ( Aht >
— 4 —ex —
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The initial and fluid temperatures are T; = 425°C and Ty; = 25°C, and we want ¢ when T' = 65°C,

or %’ 1;” = 0.1. For one-sided cooling, V/A is just the thickness. Solve for ¢:

t=—

Vv T_T 0.02m - 76008 - 7001
P% 1n ( fl) - kK 11(0.1) = 2450seconds

Ah T, - Tp 1002

So it takes a good fraction of an hour to cool down this much.

I'm afraid I messed up slightly when writing this problem, and assumed a Biot number of 4, or in
W3C notation, m = 0.25. Which is sort of right, but since the W3C graphs (rightly, when cooling
from both sides) use half the thickness as the length scale z; on these graphs, z; = 0.01m, and
Bi = 6000 x 0.01/30 = 2, and m = 0.5.

Trouble is, the m = 0.5 curve doesn’t hit 71: 1;, = 0.1 on the provided graph. Fortunately, in the
log-linear scale of these plots, the curve is roughly straight for this section (both the Newtonian
cooling and n = 1 term of the Fourier series are absolutely straight since they go as e~t), so we
can pretty safely extrapolate to the dimensionless temperature of 0.1, which lands at a Fourier
number of about 1.9:

t
Fo=X=19=2
Ty
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This is dramatically faster!

These two quench rates, in water and air, illustrate that for a given material (k, p, ¢,) and geometry
(L), lower Biot number results in much longer time scale. (Well, L isn’t quite comparable, but
the L/2 used in this part results in only two-fold reduction in timescale for Newtonian cooling,
four-fold for conduction-limited cooling; the much higher h results in another 18-fold reduction!)



