
3.185 Test 2 

Advanced Heat Transfer, Fluid Dynamics 

Solutions 

1. Write your name on all of your answer booklets 

Congratulations! Everyone got this right. If only that were true of #2... 

2. Aaliyah was obviously: (b) A pop/R&B singer who lost her life at an early age in a plane crash. Nearly 
all of you were culturally savvy enough to know this. 

The president of Bosnia­Herzegovina during its civil war was Alia Izetbegovic, correct pronounciation 
but wrong spelling; he passed about a month before the test. Latin for “others” could be alia or 
alii, wrong spelling and pronounciation (different accent). As for the Saudi peace movement... well, I 
wanted a fourth option, and pulled this one out of thin air. 

One person actually got this wrong, but I think she was just testing to see whether I’d actually take 
off points; I didn’t fall for it. 

3. Molecular beam epitaxy deposition rate 

(a) What I was looking for here was: 

i. Use the Clausius­Clapeyron equation to calculate the vapor pressure from the source temper­
ature. 

ii. Use the background pressure and temperature to estimate the mean free path of sublimating 
atoms in the chamber. 

iii. Calculate the Knudsen number, which is the ratio of mean free path to chamber size. 
iv. If the Knudsen number is greater than one, calculate the sublimation rate using the Langmuir 

equation. 

Since I wrote on the board that you may assume “vacuum” behavior for this whole problem, steps 
3(a)ii and 3(a)iii were not strictly necessary. 
Also, given the original wording of the problem, another approach which answered the stated 
question was to calculate the sublimation flux using a heat balance. Assuming that the difference 
between flux in from the heat source (electron beam) called qv , and heat flux conducted through 
the solid into the cooling water qs, is all used to sublimate the atoms, this gives: 

qv − qs = δHs · J J = 
qv − qs 

.⇒ 
ΔHs 

(b) This implicitly assumed that electron beam power either went into sublimation, or into the cooling 
water, so the flux balance is again given by: 

qv − qs = ΔHs · J. 

The net power is then the next flux times the area: 

Pebeam − Pwater = ΔHs · J · A. 
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(c) If sublimation flux distribution follows a cosine distribution (like radiating photons), and the 
sublimating atoms follow straight­line trajectories through the chamber (like photons), then guess 
what? We can use the radiation viewfactor to calculate the fraction of sublimating atoms which 
land on the substrate. 
From here it’s straightforward: r1 = 2cm, r2 = 9cm, D = 30cm, so D/r1 = 15 (effectively ∞ on 
the graph) and r2/D = 0.3, giving F12 � 0.1.

The ratio of deposition flux at the substrate to sublimation flux from the source is this times the

area ratio:


Jsubs A1F12 = . 
Jsource A2 

4. Freezing by radiation and convection 

(a) The thermal conductivity is given by the Wiedmann­Franz law: 

WΩ	 W 
kel = LσelT = 2.45 × 10−8 

K2 
· 5 × 105(Ω · m)−1 · 1800K = 22

m · K 
. 

(b) Total flux away from the top surface is radiative plus convective (Ts is top surface temperature): 

env ) + h(Ts − Tenv ).qtotal = qrad + qconv = �αenv σ(Ts 
4 − T 4 

(c) If the environment is much colder, then	 Ts � Tenv so Tenv � 0. If it is “black”, then its 
absorbtivity is one. So the above expression simplifies to 

qtotal = �σT 4 + hTs = htotalTs,s 

W W 
htotal = �σT s 

3 + h = 200 + 100
m2 

= 300 
K m2 K 

. 
· · 

(d) Set the Biot number to 0.1 and solve for Y using htotal: 

0.1k 0.1 · 22 W 

Bi = 
htotalY 

= 0.1 Y = = m·K = 0.0073m(7.3mm).
Wk 

⇒ 
htotal 300 m2 K·

(e) You’re given an equation relating flux to solidification rate, so solve it for dY /dt: 

qL − qS = ρΔHf 
dY dY qL − qS 

dt 
⇒ 

dt 
= 

ρΔHf 
. 

Since liquid metal temperature is uniform, qL = 0. At quasi­steady­state, the flux through the 
solid is equal to the flux leaving its top surface, which is htotalTs, Ts being the surface temperature. 
Since the metal temperature is roughly uniform, Ts � Tm so we can use that: 

W 
2 KdY 

= 
htotalTm = 

300 m · · 1800K 
= 2.7 × 10−4 m 

. 
dt ρΔHf 7500 kg 2.67 × 105 J s 

m3 kg· 

(f) We have resistances in series, due to conduction through the solid and evaporation/convection 
from the surface. So the heat flux in the solid goes like: 

Tm − Tenv 
qs = 

Y . 
+	 1 

ks htotal 

The trouble is, htotal is a function of the surface temperature Ts, which is somewhere between 
Tenv and Tm. We can relate Ts to the conductive flux, which is the same as the flux q above: 

qY 
.qs = ks 

Tm 

Y 
− Ts ⇒ Ts = Tm − 

ks 
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We plug this into the htotal expression from part 4c: � �3 

htotal = �σT s 
3 + h = �σ Tm − 

qY 
+ h,

ks 

then plug that into the heat flux: 

Tm − Tenv 
qs = 

Y	 . 
+ 1 

ks �σ(Tm − qsY )3 
+hks 

Then we need to solve this for qs (probably numerically), and use that in the solidification rate 
equation from part 4e. 

5. Injection molding a CD 

(a) Assumptions which could be made here included: 

•	 Newtonian behavior with uniform viscosity (since that was given). 
•	 Incompressible flow with uniform density; this and the previous assumption permitted use of 

the simpler closed­form Newtonian Navier­Stokes equations. 
•	 Laminar flow (with small thickness and high viscosity this is reasonable). 
•	 Steady­state (given); time derivatives are all zero. 
•	 Fully­developed (given as short entrance length); flow is purely radial, uθ = uz = 0. But 

velocity derivatives in the flow direction (the r­direction) are not zero, as conservation of 
mass requires that there be faster flow near the center and slower flow near the outside. 

•	 Edge effects and axisymmetric are the same thing here; velocity derivatives in the θ direction 
are zero. 

•	 Gravity acts in the negative z­direction; Fr = Fθ = 0, Fz = −ρg. 

(b) Since uθ = uz = 0 (because flow is fully­developed), the mass conservation equation reduces to: 

1 ∂ 
(rur ) = 0. 

r ∂r 

Steady­state, fully­developed, axisymmetric, and Fr = 0 reduce the r­momentum equation to: 

∂ur ∂p ∂ 1 ∂ ∂2ur 
.ρur 

∂r 
= − 

∂r 
+ µ 

∂r r ∂r 
(rur ) + 

∂z2 

With a bit more sophistication, one might realize that the r­derivative in the viscosity term is just 
a derivative of what we found to be zero in the mass equation, so that too could be eliminated. 
The θ­momentum equation is almost completely eliminated: 

0 = − 
1 ∂p 

, 
r ∂θ 

so there are no pressure gradients in the θ­direction, and the z­momentum equation only has 
pressure gradients due to weight of the polymer: 

∂p 
0 = − 

∂p 
+ Fz = 

∂z 
− ρg . 

∂z 
− 

6. Flow rate and pressure in a tube 

(a) To calculate pressure drop ΔP required to pump at a given flow rate Q: 

•	 Calculate average velocity from flow rate: uav = Q/Axs = Q/πR2 . 
•	 Calculate Reynolds number using average velocity: Re= ρuav d/η. 

3 



• If Re< 2100, one can use the laminar friction factor: f = 16/Re, or just use the Hägen­
Poisseuille equation and be done with it. Otherwise, one must use a graph to determine the 
friction factor. 

1 • Shear stress is friction factor times kinetic energy density: τ = fK = f · 2 ρu2 .av 
1 • Drag force is shear stress times tube inside surface area: Fd = τA = fKA = f · 2 ρu2 2πRL.av · 

Fd Fd • Pressure drop is drag force per unit cross­section area: ΔP = Axs 
= πR2 .


Combining the last three steps gives:


1f · 2 ρu2 2πRL 
= 

fρu2 L ΔP fρu2 
av · av avΔP = = 

πR2 R 
⇒ 

L R
. 

(b) Since the tube radius is 0.5 cm, the cross section area is 0.25πcm2, making things easier. Also, 
for the laminar cases we bypass last three steps above: 

πΔP R4 ΔP 8µQ 
=

8µuav
Q = = 

8µL 
⇒ 

L πR4 R2 
. 

Flow rate, cm3/s: 0.25π 2.5π 25π 
Average velocity, cm/s: 1 10 100 
Reynolds number: 100 1000 10,000 
Friction factor: 0.16 0.016 0.0072 
Pressure drop ΔP/L, g/(cm2 · s2): 0.32 3.2 144 

(c) The third case is turbulent, and the nearly five­fold jump in the relative pressure drop (relative 
to what the laminar flow calculation would give) is pretty dramatic! 
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