In problem 2 of P.S. 5, we define the relevant ensemble as an ensemble in which T,V,N and H
(magnetic field) must be held constant. In the solutions, it was determined that the characteristic
potential for this ensembleis given by:
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From the General Structure of Statistical Mechanics, we have:
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I' isthe partition function of this ensemble and is given by:

T = efﬁ(Esmte*MsmteH)
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Since the energy of the system is independent of the spin alignment of the individual particles,
it is possible to set the energy as a constant and the partition function is just given by:
Now, the total magnetization of the system is given by
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The microstates available to each particle are either ni = +1 or ni = —1. The partition

function can therefore be expressed as:
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The sum within the exponential is over the total number of particles of the system. From basic
math, e?t® = ¢ . ¢ and
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Since the particles are identical,
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This could have bee done in less steps if we consider that, for a system of non-interacting
distinguishable particles,

Q=q"
We just needed to calculate the partition function ¢ of a single particle. In this case, each
particle can be in just two possible states, corresponding with a parallel or anti-parallel alignment
with the field, and
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