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Problem 1

Consider an insulated and rigid chamber divided by one partition at the middle. One of the
partitions is full with a gas. If the dividing wall suddenly breaks, please determine how the temper-
ature of the system will change, as a function of properties such as specific heat, compressibilities,
thermal conductivity, etc.

Solution 1

The total energy remains constant, since the system is thermally insulated and has rigid walls.
Therefore, no heat and/or work can be transferred from the system to its surroundings, or vicev-
ersa. Since the system is closed, there is also no change in the number of moles comprising the
system. Based on this, we have that:
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If the volume change is small,
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By using some of the mathematical rules for manipulating partial derivatives, we have:
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By using a Maxwell identity derived from the differential expression of the Helmholtz free en-

ergy (g_fi)T,N = ‘g—fT:’)MN ), we modify the numerator of the previous expression. The denominator

is simplified, since the p-v term gets cancelled by the ’constant volume condition’:
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The first term of the numerator needs to be manipulated once again, in order to get more *man-
ageable’ expressions:
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Using the identities for «, k1 and C'y,, we have:
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For a monoatomic ideal gas we have:

Substituting, and setting everything as a function of 7', V, N and R, we thus have:
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This would not hold for the case of real gases, for which the energy is not only a function of
temperature, but also of the volume (for example, the van der Waals fluid.).

It is interesting to note that, always C'y, > 0 and k7 > 0 (necessary for the stability of a ther-
modynamic system). Usually, « is also positive (water is an exception, at 7' ~ 0°C).

This means that a free expansion, for many kinds of materials, would generally lead to a de-
crease in the temperature of the system, provided the system is isolated from its surroundings (so
it cannot exchange work, nor heat.).

Problem 2
In class we saw that, for an adiabatic pull, with force, F, the change in temperature under

constant force is:
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What is the relationship between C'r and Cp?

Solution 2
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Using the relationship
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We find that

From class, we also know that
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8—F)P can be manipulated using the chain rule:
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Since K = 9F) jand 2&) , = oL) = L.y, we finally have:
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Thus, Cp > Cp. This means that the entropy of a system under isobaric condition is greater
than when the system is subjected to tension along one direction.
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Note that & is the Elastic Constant corresponding to the Hooke’s Law. It can be easily related
to the Young’s Modulus:K ~ E - L

Per mole, using

1
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Andusing oy ~1x 107 %and K ~ 1 x 10°- L
we have:
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