18.014 Problem Set 11 Solutions
Total: 32 points

Problem 1: Prove that a sequence converges if, and only if its liminf equals its
limsup.

(4 points) Suppose {a,} is a sequence that converges to a limit L. Then

given € > 0, there exists an integer N such that n > N implies |a, — L| < §. In
particular, the set {a,} for n > N is bounded below by L — $ and bounded above

2
by L + £. Thus,

> inf aHZL—gandL+§> sup anZL—E.

€
L+<
2 n>N+1 - n>N+1 2

In particular, given € > 0, there exists N such that m > N implies

sup a, — L| < e.

n>m

inf a,, — L
n>m

< €,

We conclude liminf a,, = L = lim sup a,, and the liminf equals the limsup.

Conversely, suppose {a,} is a sequence such that liminfa, = L = limsupa,. We
will show lim,, . a, = L. Given € > 0, there exist N; and Ny such that m > N;
implies

inf a, — L| <e¢
n>m

and m > N, implies
sup a, — L| < e.
n>m

Let N = max{Ny, No}. If m > Ny, Ny, then

L—e< infa, <a, <supa, <L +e.

n>m n>m

In particular,
lay, — L] <€

if m > N. Thus, lim,,_. a, = L.



Problem 2: Use this fact to prove every Cauchy sequence of real numbers converges.

(4 points) First, recall the following lemma:

Lemma: Every decreasing sequence that is bounded below converges, and every
increasing sequence that is bounded above converges.

Now, let {a,} be a Cauchy sequence of real numbers. Then there exists M such that
n,m > M implies |a, — a,,| < 1. Putting m = M + 1, we observe ap 41 — 1 < a, <
ayi1+ 1if n > M. Put C = max{ap1,0a1,...,ay} and put B = min{ay 1 —
1,a1,...,ap}. Then

B<a,<C

for all n. In particular, if b, = sup,,>, @ and ¢, = inf,,>, @y, then {b,} is a de-
creasing sequence bounded below by B and {¢,} is an increasing sequence bounded
above by C'. Thus, by the lemma {b,} converges to L; and {¢,} converges to Ls.

To finish the proof, we again use that {a,} is a Cauchy sequence. Given ¢ > 0,
there must exist N such that n,m > N implies |a, —a,,| < £. Moreover, there must
exist My > N such that |by, — Li| < ¢ and My > N such that |cp, — Lo| < :.
We can do this because lim,,_,o, b,, = L1 and lim,,_,. ¢, = Ly. Choose n > M; such
that |a, — by, | < & and choose m > Ms such that |a,, — ca,| < £ We can do this

because by, = supysyy, ax and cyy, = infy> g, ar. Now, we observe
|Ly — Lo| < |Ly — bagy | + |bar, — an| + |an — am] + |am — can| + |ean, — La| < €.

Since this is true for every € > 0, we conclude that L; = Ly. But, by the previous
problem, if the liminf and the limsup are equal, then lim,, ., a, exists. Therefore,
every Cauchy sequence converges.

Problem 3: Suppose the series 22021 a, converges. Then lim,, o, a, = 0.

(4 points) Define s, = > | a,,. Then by definition {s,,} converges. In

particular, {s,,} is a Cauchy sequence (Problem 5 on the last practice exam). Thus,
given € > 0, there exists N such that m,n > N implies |s,, — s,,| < €. If we choose
n =m + 1, then we get

|| = |Smi1 — Sm| < €

whenever m > N + 1. We conclude lim,,,_, a,, = 0.



Problem 4: A function f on R is compactly supported if there exists a constant
B > 0 such that f(x) = 0if |z| > B. If f and g are two differentiable, compactly
supported functions on R, then we define

(f * 9)a / o —v)

Prove (i) f*xg=gx fand (ii) f'xg= f*g.

(4 points) a) Using the substitution u = z — y, we have

[ttt =~ [ e —antn= [ state -t

Using that f is compactly supported, choose B such that f(u) = 0 if |u| > B. Thus,
if t > B + |z, then

/:jtf(U)g(:B—u)du = /I:tB f(u)g(x—u)+/_i f(u)g(x—u)du+/9x+tf(u)g(x_u)du

The first and third terms are zero since f(u) is zero whenever v < —B or u > B.
Hence, our integral becomes
/ fw)g(x —u)d

[ ote st [ g wra

—t —-B
if t > B. And we have

Similarly,

T+

(f *g)(x) = lim ) x—udu_/’f o — u)d

x—1

t

= lim [ g(z—u)f(u)du= (g% f)()

t—o0 ¢
b) Integration by parts tells us

t t

+ [ flz—y)d (y)dy.

e =)o)y =~ (e~ )o(0)




The limit of the first term on the right as t — oo is
Jim (= f(z = )g(t) + f(z +1)g(=1)) =0

since g(t) = 0 and g(—t) =0 if t > B’ for some B’ > 0. Thus,

t

(f"* g)(w) = lim /_i flle—y)gy)dy = lim | f(z —y)g'(y)dy = (f * g')()-
Applying part (a), we get (f'xg)(x) = (f ¢ )(z) = (¢’ * f)(x) as desired.

Problem 5: Determine whether the series diverge, converge conditionally, or con-
verge absolutely.

- L /n = . (2n+ 100"
(a) Y (=1) b)Y ()" (—) -

n + 100 3n+1

n=1 n=1

(4 points) (a) Consider the function f(z) = xjr/foo. Note

oy 1 VT
F@) = @+ 100) @+ 1007

One observes f'(x) < 0 if x > 100. Hence, f is monotonically decreasing when
x > 100. Moroever, its easy to see lim,_,o, f(z) = 0. Now, we break up our sum
into 100
AL e VR
> (=1 + > (=1

£ 100 At n+ 100

The first term is a finite sum and the second term converges by Leibniz’s rule (Thm.

10.14). Thus, our series converges.

\/ﬁ
n+100"
b, = \/%E’ and note lim,, .o $* = 1. By example one on page 398, we know that > by

However, our series does not converge absolutely. To see this, let a, =

diverges. Hence, by theorem 10.9, > a,, diverges as well.

(b) This sum converges absolutely. Let a, = (sz:—fl)O)n and b, = (2)". Observe
lim, .o 3= = 1 and ) b, converges since it is a geometric series. Hence, by theorem

10.9, > a,, converges as well.

Problem 6: Prove ) 7 a, converges absolutely if a, = 1/n if n is a square and
a, = 1/n? otherwise.



(4 points) Let sy = 32 a, be the nth partial sum. Note
1 1 2
sv= ) st D s )

n<N m<vVN n<N
not a square -
But, Zn<N 5 <2y - L. This is a finite number, C, by example one on page
398. Since the partial sums sy are an increasing sequence, bounded by C, they must
converge by our lemma in problem 2.

Problem 7: (a) Prove that if > >° net |a,| converges, then Y >° a2 converges. Give

a counterexample in which Y °7 a2 converges but > >7 | |a,| diverges.

(n))*

(b) Find all real ¢ for which the series Z

——— converges.
“— (3n)!

(4 points) (a) Suppose Y~ |a,| converges. By problem 3, we must have
limy, o |an| = 0. Thus there exists IV such that |a,| < 1 whenever n > N. In
particular, we see a2 |an|2 < |ay| if n > N. Splitting up our series, we have

oo

2 Za £

n=1 n=N+1

The first sum is finite because it is a finite sum. We may compare the second series
term by term to > ° ., |a,|, which converges by hypothesis.

On the other hand, ) 7 (1)2 converges by example one on the top of page 398.
Yet, >0, ~ is the dlvergent harmonic series.

(b) Let b, = ?m)), First, we apply the ratio test, and we get

. bn+1 . (n + 1)C
lim = lim .
n—oo b, n—oo (3n + 3)(3n+2)(3n + 1)

This limit is zero and the series converges if ¢ < 3. The limit is co and the series
diverges if ¢ > 3. For ¢ = 3, we analyze each term. Note

ok 1
:l.Hn kHQ 2_

k=1 k=1

since 2k <n-+kand k <2n+k. But, Y 7, Qn converges because it is a geometric
series. Thus, by the comparison test (Thm. 10.8), we conclude that our series
converges when ¢ = 3.



Problem 8: (a) Prove that lim, ... > 4", + = log(p/q). (b) Show the series 1 +
1/3+1/5—-1/2—=1/4+1/7+1/9+1/11—1/6—1/8... converges to log 2+ % log(3/2).

(4 points) (a) We let € > 0. First choose N such that -- < ¢/2 for all
n > N. Then for all n > N,

LN e | 1
A N L T
(Zk‘ k‘) pn<€/

k=qn k=qn

Now, choose M such that £-4 < €/2 for all n > M. As the function f(z) =1/
is monotonically decreasing, We get the estimate

e m g 11 -
< __/ x)g____p q<€/2.
gn pn npg

k=qn

Now, choose N = max N, M and observe f;;n L — Jog(x)|Pm = log(p/q). Thus,

for all n > N, the triangle inequality and our work above implies:

pn pn—1 pn—1
- —log(p/q) ‘ Z D ‘ —log(p/q)| < €/2+¢/2 =e.
k=qn k=qn k=gn k= qn

(b) We begin by observing that

Now,
3m 1 6m 1 3m 1 6m 1 3m 1 3m 1
PIE T D DD DL D D) DS BF
k=1 k=1 k=1 k=1 k=1 k=1
and thus
6m 1
= ¥ iy Y =S e ()
k:3m+1 k 2m+1 k=3m

Thus limy, . S5m = log(6m/3m) + 3 log(3m/2m) = log2 + 3 log(3/2).
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