18.014 Problem Set 1 Solutions
Total: 24 points

Problem 1: If ab =0, then a =0 or b = 0.

(4 points)

Suppose ab = 0 and b # 0. By axiom 6, there exists a real number y such that
by = 1. Hence, we have

a=1l-a=a-1=a(by) =(ab)y=0-y=0
using axiom 4, axiom 1, axiom 2, and Thm. [.6. We conclude that a and b cannot

both be non-zero; thus, a =0 or b = 0.

Problem 2: If a < cand b < d, then a + b < ¢+ d.

(4 points) By Theorem 1.18, a +b < ¢+ b and b+ ¢ < d + ¢. By the
commutative axiom for addition, we know that c4+b = b+c¢,d+c = c+d. Therefore,

a+b<c+bc+b<c+d By Theorem .17, a+ b < ¢+ d.

Problem 3: For all real numbers x and y, ||z] — |y|| < |z — yl.

(4 points)

By part (i) of this exercise, |z|—|y| < |x—y|. Now notice that —(|z|—|y|) = |y| —|=|.
By definition of the absolute value, either ||z|—|y|| = |z|—|y| or ||z]|—|y|| = |y| — |=].
In the first case, by part (i) of this problem, we see that ||z| — |y|| < |z —y|. In
the second case, we can interchange the = and y from part (i) to get ||z| — |y|| =
lyl — |z| < |y — x| = |x — y|, where the last equality comes from part (c) of this
problem. Thus, ||z|— |y|| < |z — y.

Problem 4: Let P be the set of positive integers. If n,m € P, then nm € P.

(4 points)



Fix n € P. We show by induction on m that nm € P for all m € P.
First, we check the base case. If m = 1, then

nm=n-1=1-n=néekP

by axiom 4, axiom 1, and the hypothesis n € P.

Next, we assume the statement for m = k and we prove it for m = k + 1. Assume
nk € P. By theorem 5 of the course notes, nk+n € P. By axiom 3, nk+n = n(k+1);
thus, n(k + 1) € P and our induction is complete.

Problem 5: Let a,b € R be real numbers and let n € P be a positive integer. Then
a-b" = (a-b)"

(4 points)

Fix a,b € R. We prove the statement by induction on n.

First, we must check the statement for n = 1. In that case, we must show a' - b! =
(a-b)'. By the definition of exponents, we know a! = a, b' = b, and (a-b)! =a-b
so our statement becomes the tautology a-b=a - b.

Next, we check the inductive step. Assume the statement is true for n = k; we must
prove it for n = k + 1.

Notice that (ab)*™ = (ab)* - (ab)! = a* - V¥ - a' - b by Theorem 10 from the course
notes and the induction hypothesis. As a® - b* - a' - b! = a* - a' - bF - b = gF*+1 . PP+l
by commutativity and Theorem 10, we see that the statement holds for n = k£ 4 1.

Problem 6: Let a and h be real numbers, and let m be a positive integer. Show
by induction that if @ and a + h are positive, then (a + h)™ > a™ + ma™ 'h.

(4 points)

The first step is to prove the statement for m = 1. In this case (a+h)™ = (a+h)' =
a + h by the definition of exponents and

a”+ma" ‘h=a"+1-a"Yh=a+ah=a+1-h=a+h

where the second to last inequality used the definition a® = 1. Hence, for m = 1, we
have (a+h)™ = a™ +ma™ 'h, which in particular implies (a+h)™ < a™ +ma™ 'h
by the definition of <.

Next, we assume the statement for m = k, and then we prove it for m = k + 1.
Thus, we assume (a + h)* > a* + ka*~h, which means (a + h)* = a* + ka*~! or
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(a + h)* > a* + ka*~'h. In the first case, we can multiply both sides by (a + h) to
get (a+h)*-(a+h) = (a* +ka*1)(a+h). In the second case, we can use Thm. 1.19
and the fact that a +h > 0 to conclude (a + h)* - (a + h) > (a* + ka**h) - (a + h).
Thus, by the definition of exponents and the definition of >, we have

(a+h) ™ = (a+h)* (a+h) > (a* +kd"'h)-(a+h) = "+ (k+1)a"h+ka* " h?.

To finish the proof we need a lemma.

Lemma: If a is a positive real number, then a' is positive for all positive inte-
gers [.

The proof is by induction on [. When [ = 1, we know a' = a! = a using the
definition of exponents. However, a is positive by hypothesis so the base case is
true.

Now we assume the result for [ and prove it for [ + 1. Note a'*! = a! - a by the def-
inition of exponents. Further, by the problem 5, a!*! is positive since a' is positive
by the induction hypothesis and a is positive by the hypothesis of the lemma. The
lemma, follows.

Now, back to our proof. By the lemma, we know a*~! is positive since k — 1 is
a positive integer and a is positive. Moreover, all positive integers are positive, as is
remarked in the course notes; thus, ka*~! is positive by problem 5. Now, if h = 0,
then h? = 0 by Thm. L.6; hence, (ka*"')h? = 0 again by Thm. 1.6. Putting this
together with the expression (*) above yields

(a+h)k+1 zak+1+(k+1)akh+kak_lh2:ak+1+(k+1)akh.

On the other hand, if h # 0, then h? > 0 by Thm. I1.20; hence, ka*"'h? > 0
by Thm. 1.19. Adding a*** + (k + 1)a*h to both sides (using Thm. 1.18) yields
a*t + (k + 1)a*h < o' + (k + 1)a*h + ka*~*h?. Combining this with (*) and
applying the transitive property (Thm. 1.1.7) implies (a+h)*** > a*™1 + (k+1)a*h.
In particular,

(a+ R > " 4 (k4 1)d"h.

Thus, regardless of whether h = 0 or A # 0, we have proved the statement for
m = k + 1. The claim follows.

Bonus: If zq,...,x, are positive real numbers, define

A, = u Gy = (1- - )™

n



(a) Prove that G,, < A,, for n = 2.
(b) Use induction to show G,, < A, for any n = 2* where k is a positive integer.
(¢) Now show G,, < A, for any positive integer n.

(4 points)

Because this is a bonus problem, this solution is a bit less rigorous than the others.
However, you should be able to fill in all of the details on your own.
(a) Note (z1 — 22)? > 0. Expanding, we get

(1’1 — I2)2 = Q?% + f% — 21‘1332 = (371 + $2)2 — 4$1$2

is also positive. Hence, (1 + 22)? > 4x115. Dividing by 4 and taking square roots,

we get
T+ X9
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(b) We prove this part by induction on k. The base case k = 1 was done in part a.
Now, we assume G,, < A, for n = 2 and we prove it for n = 2¥*1. The inductive
hypothesis tells us that

> ($1$2)1/2-

Tr1+ -+ Tok k
KZ%Z(le...QSQk)l/?

and
./L'2k+1 + R + Tok+1

2k

}/2 = Z ($2k+1 L x2k+1)1/2k.

Using part (a), we know
Yi+Y,
2
Writing this in terms of the x;, we have

> (Y1Y,)'2,

1+ o+ Toksr
ok+1

= (SCl"'l'Qk-H) / k+1.

(c) Select a positive integer m such that 2™ > n. Fix positive real numbers

r1,...,%,, and let
Tit -+,

n

A, =

Now, put A, = 2,11 = Tye1 = - -+ = Tom. Applying part (b) for these real numbers
T1,...,Tom yields

T+t x,+ (2™ —n)A,
om

> (21 ) /2T ACT/2T



The left hand side is just A,; hence, dividing both sides by A& yields A" >
(z1---2,)"?". Raising both sides to the power of 2™ /n yields

An 2 (:Ul .. xn)l/n

This is what we wanted to show.
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