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18.014 Problem Set 1 Solutions 
Total: 24 points


Problem 1: If ab = 0, then a = 0 or b = 0. 

Solution (4 points) 
Suppose ab = 0 and b = 0. By axiom 6, there exists a real number y such that 
by = 1. Hence, we have 

a = 1 a = a 1 = a(by) = (ab)y = 0 y = 0 · · · 

using axiom 4, axiom 1, axiom 2, and Thm. I.6. We conclude that a and b cannot 
both be non-zero; thus, a = 0 or b = 0. 

Problem 2: If a < c and b < d, then a + b < c + d. 

Solution (4 points) By Theorem I.18, a + b < c + b and b + c < d + c. By the 
commutative axiom for addition, we know that c+b = b+c, d+c = c+d. Therefore, 
a + b < c + b, c + b < c + d. By Theorem I.17, a + b < c + d. 

Problem 3: For all real numbers x and y,
 |x| − |y|
 ≤ |x − y|
.


Solution (4 points) 
By part (i) of this exercise, |x|−|y| ≤ |x−y|. Now notice that −(|x|−|y|) = |y|−|x|. 
By definition of the absolute value, either ||x|−|y|| = |x|−|y| or ||x|−|y|| = |y|−|x|. 
In the first case, by part (i) of this problem, we see that ||x| − |y|| ≤ |x − y|. In 
the second case, we can interchange the x and y from part (i) to get ||x =| − |y||
|y| − |x| ≤ |y − x| = |x − y|, where the last equality comes from part (c) of this 
problem. Thus, ||x| − |y|| ≤ |x − y|. 

Problem 4: Let P be the set of positive integers. If n, m ∈ P , then nm ∈ P . 

Solution (4 points) 
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Fix n ∈ P . We show by induction on m that nm ∈ P for all m ∈ P . 
First, we check the base case. If m = 1, then 

nm = n 1 = 1 n = n ∈ P· · 

by axiom 4, axiom 1, and the hypothesis n ∈ P . 
Next, we assume the statement for m = k and we prove it for m = k + 1. Assume 
nk ∈ P . By theorem 5 of the course notes, nk+n ∈ P . By axiom 3, nk+n = n(k+1); 
thus, n(k + 1) ∈ P and our induction is complete. 

Problem 5: Let a, b ∈ R be real numbers and let n ∈ P be a positive integer. Then 
an bn = (a b)n .· · 

Solution (4 points) 
Fix a, b ∈ R. We prove the statement by induction on n. 
First, we must check the statement for n = 1. In that case, we must show a1 b1 = · 
(a b)1 . By the definition of exponents, we know a1 = a, b1 = b, and (a b)1 = a b· · · 
so our statement becomes the tautology a b = a b.· · 
Next, we check the inductive step. Assume the statement is true for n = k; we must 
prove it for n = k + 1. 
Notice that (ab)k+1 = (ab)k (ab)1 = ak bk a1 b1 by Theorem 10 from the course · · · · 
notes and the induction hypothesis. As ak bk a1 b1 = ak a1 bk b1 = ak+1 bk+1 · · · · · · · 
by commutativity and Theorem 10, we see that the statement holds for n = k + 1. 

Problem 6: Let a and h be real numbers, and let m be a positive integer. Show 
by induction that if a and a + h are positive, then (a + h)m ≥ am + mam−1h. 

Solution (4 points) 
The first step is to prove the statement for m = 1. In this case (a+h)m = (a+h)1 = 
a + h by the definition of exponents and 

a m + ma m−1h = a 1 + 1 a(1−1)h = a + a 0h = a + 1 h = a + h· · 

where the second to last inequality used the definition a0 = 1. Hence, for m = 1, we 
have (a + h)m = am + mam−1h, which in particular implies (a + h)m ≤ am + mam−1h 
by the definition of ≤. 
Next, we assume the statement for m = k, and then we prove it for m = k + 1. 
Thus, we assume (a + h)k ≥ ak + kak−1h, which means (a + h)k = ak + kak−1 or 
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(a + h)k > ak + kak−1h. In the first case, we can multiply both sides by (a + h) to 
get (a + h)k (a + h) = (ak + kak−1)(a + h). In the second case, we can use Thm. I.19 · 
and the fact that a + h > 0 to conclude (a + h)k (a + h) > (ak + kak−1h) (a + h).· · 
Thus, by the definition of exponents and the definition of ≥, we have 

(a + h)k+1 = (a + h)k (a +h) ≥ (a k + kak−1h) (a + h) = a k+1 +(k +1)a kh +kak−1h2 .· · 

To finish the proof we need a lemma. 

Lemma: If a is a positive real number, then al is positive for all positive inte­
gers l. 

The proof is by induction on l. When l = 1, we know al = a1 = a using the 
definition of exponents. However, a is positive by hypothesis so the base case is 
true. 
Now we assume the result for l and prove it for l + 1. Note al+1 = al a by the def­· 
inition of exponents. Further, by the problem 5, al+1 is positive since al is positive 
by the induction hypothesis and a is positive by the hypothesis of the lemma. The 
lemma follows. 

Now, back to our proof. By the lemma, we know ak−1 is positive since k − 1 is 
a positive integer and a is positive. Moreover, all positive integers are positive, as is 
remarked in the course notes; thus, kak−1 is positive by problem 5. Now, if h = 0, 
then h2 = 0 by Thm. I.6; hence, (kak−1)h2 = 0 again by Thm. I.6. Putting this 
together with the expression (*) above yields 

(a + h)k+1 ≥ a k+1 + (k + 1)a kh + kak−1h2 = a k+1 + (k + 1)a kh. 

On the other hand, if h =� 0, then h2 > 0 by Thm. I.20; hence, kak−1h2 > 0 
by Thm. I.19. Adding ak+1 + (k + 1)akh to both sides (using Thm. I.18) yields 
ak+1 + (k + 1)akh < ak+1 + (k + 1)akh + kak−1h2 . Combining this with (*) and 
applying the transitive property (Thm. I.1.7) implies (a+h)k+1 > ak+1 +(k +1)akh. 
In particular, 

(a + h)k+1 ≥ a k+1 + (k + 1)a kh. 

Thus, regardless of whether h = 0 or h = 0, we have proved the statement for 
m = k + 1. The claim follows. 

Bonus: If x1, . . . , xn are positive real numbers, define 

An = 
x1 + · · · + xn 

, Gn xn)1/n. 
n 

= (x1 · · · 
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(a) Prove that Gn ≤ An for n = 2. 
(b) Use induction to show Gn ≤ An for any n = 2k where k is a positive integer. 
(c) Now show Gn ≤ An for any positive integer n. 

Solution (4 points) 
Because this is a bonus problem, this solution is a bit less rigorous than the others. 
However, you should be able to fill in all of the details on your own. 
(a) Note (x1 − x2)

2 ≥ 0. Expanding, we get 

(x1 − x2)
2 = x1

2 + x2
2 − 2x1x2 = (x1 + x2)

2 − 4x1x2 

is also positive. Hence, (x1 + x2)
2 ≥ 4x1x2. Dividing by 4 and taking square roots, 

we get 
x1 + x2 ≥ (x1x2)

1/2 . 
2 

(b) We prove this part by induction on k. The base case k = 1 was done in part a. 
Now, we assume Gn ≤ An for n = 2k, and we prove it for n = 2k+1 . The inductive 
hypothesis tells us that 

Y1 = 
x1 + · · · + x2k 

x2k )1/2k 

2k 
≥ (x1 · · · 

and 
Y2 = 

x2k+1 + · · · + x2k+1 
x2k+1 )1/2k 

. 
2k 

≥ (x2k+1 · · · 

Using part (a), we know 
Y1 + Y2 ≥ (Y1Y2)

1/2 . 
2 

Writing this in terms of the xi, we have 

x1 + + x2k+1· · · 
x2k+1 )1/2k+1 

. 
2k+1 

≥ (x1 · · · 

(c) Select a positive integer m such that 2m > n. Fix positive real numbers 
x1, . . . , xn, and let 

An = 
x1 + · · · + xn 

. 
n 

Now, put An = xn+1 = xn+1 = = x2m . Applying part (b) for these real numbers · · · 
x1, . . . , x2m yields 

x1 + + xn + (2m − n)An 
)1/2m 

A(2m−n)/2m· · · 
2m 

≥ (x1 · · · xn n . 
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(2m−n)/2m n/2m 

The left hand side is just An; hence, dividing both sides by An yields An ≥
(x1 · · · xn)1/2m 

. Raising both sides to the power of 2m/n yields 

An ≥ (x1 · · · xn)1/n. 

This is what we wanted to show. 
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