18.014 Problem Set 5 Solutions
Total: 24 points

Problem 1: Let f(z) = 2%+ 222 4+ 1 for 0 < z < 10.
(a) Show f is strictly increasing; what is the domain of its inverse function g7
(b) Find an expression for g, using radicals.

(4 points) (a) Let 0 <z < y < 10. Since
yt— a2t = (y— o)y’ + o+ ya® +2%) >0,
we have y* > z*. Similarly, y? > 22 since
y' =2’ = (y—a)(y +a) > 0.

Summing, we get

f) =y +2° +1>2" +22% +1
and f is strictly increasing. Since f(0) = 1, f(10) = 10,201, and f is strictly
increasing, the domain of its inverse function g is

{z| 1 <2 <10,201}.

(b) Observe g(z) = /+/x — 1. It’s a good exercise to check that f(g(x)) = g(f(z)) =

x.

Problem 2: (a) Show by example that the conclusion of the extreme value theorem
can fail if f is only continuous on [a, b) and bounded on [a, b].

(b) Let f(z) = for 0 < ax < 1;let f(1) = 5. Show that the conclusion of the small
span theorem fails for the function f(x).

(4 points) (a) Define f(x) = 2 if 0 < x < 1, and define f(1) = 0. Let

x € [0,1]. We claim f(z) is not a maximum value of the function f on [0,1]. If
x =1, then f(1) =0, and 0 is not a maximum of f on [0,1] since f(3) =3 > 0. If

x # 1, then define
1+

5
Note that f(z) = < y = f(y); hence, f(x) is not a maximum of f on [0,1]. We
conclude that f has no maximum on [0, 1].
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(b) Suppose that the conclusion of the small span theorem is true for the function
f(z) in part (b). Then given € = 1, we can find a partition 0 = xy < z; < -+- <
Tp_1 < T, = 1 of the interval [0, 1] such that whenever z; ; <z <y < x;, we have

[f(z) = fly)] < 1.

Consider the interval [x,_1,z,| = [£,_1,1], and put y = 1. For any x, ; < z < 1,
we have

[f(@) = fy)l =z —5=5-2>4

since x < 1 < 5. This is a contradiction. Thus, the conclusion of the small span
theorem fails for this function.

Problem 3: Assume f is continuous on [a, b]. Assume also that fab f(z)g(z)dz =0
for every function g that is continuous on [a,b]. Prove that f(z) = 0 for all z in
la, b].

(4 points) Put g(x) = f(x). Then f;f(x)%la: = 0. Since f is a continuous
function, z? is a continuous function, and the composition of continuous functions
is continuous, we know f(z)? is a continuous function. Since f(z)? is continuous on
the interval [a, b], we know f(z)? is bounded and integrable on the interval [a, b] by
Theorem 3.11 and Theorem 3.14. Thus, we may apply problem 7 on page 155, and
we get that f(z)? = 0 for every z € [a, b]. It follows that f(z) =0 for all = € [a, b].

Problem 4: We define a set A C R to be dense in R if every open interval of R
contains at least one element of A. Let A be a dense subset of R, and let f(z) be a
continuous function such that f(z) = 0 for all x € A. Prove that f(x) = 0 for all
xr eR.

(4 points) Fix x € R. To show f(z) = 0, it is enough to show |f(z)| < €

for any € > 0. So fix € > 0. Since f is continuous at x, there exists § such that
y € (r — 6,z +0) implies |f(y) — f(z)| < e. But, the interval (z — §,x + 0) must
contain y € A. For this y, we have f(y) = 0. Hence, |0 — f(z)| < e and |f(z)| < €
as desired.

Problem 5: Let f(z) be a continuous function on [0, 1] and fix w € R. Show that
there exists z € [0, 1] such that the distance between (w,0) and the curve y = f(x)
is minimized by (z, f(z)).



(4 points) Note that the distance between (z, f(z)) and (w,0) is g(x) =
V/(z —w)2 + f(z)? by the Pythagorean theorem. Observe that (z — w)? is a con-
tinuous function because it is a polynomial in z, f(z)? is a continuous function
because it is the composition of continuous functions, (z —w)?+ f(z)? is continuous
because it is the sum of continuous functions, and finally g(z) = \/(z — w)? + f(z)?
is continuous because it is the composition of continuous functions. Because g(x)
is a continuous function on [0,1] it must have a minimum value z € [0,1] by the
extreme value theorem. Hence, (z, f(z)) minimizes the distance between the curve
y = f(z) and the point (w,0).

Problem 6: Show that the line y = —x is tangent to the curve given by the equation
y = 2° — 622 4+ 8x. Find the point of tangency. Does this tangent line intersect the
curve anywhere else?

(4 points) First, we figure out where the curves y = —x and y = z° —
622 + 8z intersect. Setting them equal yields —z = 2® — 622 4 8z. Rearanging and

factoring, we get
r(z—3)*=0.

Thus, the two curves intersect at © = 3 and z = 0.

Next, we determine where the two curves have the same derivative. In the case
y = —x, we get % = —1. In the case of y = 2% — 62> + 8z, we get Z—Z = 32?2 —122+38.
Setting these two equal yields

0=322—120+9=3(x—3)(z—1).

Thus, the curves share the same slope at + = 1 and z = 3. The curve y = —x is
tangent to the curve y = x* — 622 + 8 when the two share the same value and
derivative. This happens only at the point x = 3. The curves also intersect at the
point x = 0, but they do not share the same slope at that point.

Bonus: Define a function f on the interval [0, 1] by setting f(z) = 0 if z is irrational,
f(z) = % if z =2 with m and n positive integers having no common factors except
one, and f(0) = 1.

(a) Show that f is integrable on [0, 1].

(b) Show that f is continuous at every irrational and discontinuous at every rational.

(4 points) (a) To show that f is integrable on [0, 1], we must show that its
upper integral I(f) and its lower integral I(f) agree. We know I(f) > I(f); hence,



we must show the opposite inequality.

First, observe that 0 is a step function and 0 < f on [0,1]. Thus, 0 < I(f).
Now, we bound I(f) from above. We introduce step functions s,, for n = 2,3,
follows.

Fix n € P, and let

...as

P = {]—Qi%e [0,1]| ¢ < n, p,qG]P’}.
qg n
Since the set P is finite, it yields a partition of [0, 1]. Define s,(z) = 1 if there exist
p,q € P with ¢ < n such that %’ — % << §—i— 4. Let s,(z) = 0 if there do not
exist such p and ¢q. Clearly s, is a step function with respect to the partition P.

Observe that for fixed ¢ < n, the number of § € [0,1] is at most ¢ + 1, which
is at most n. Moreover, there are less than n positive integers ¢ such that ¢ < n.
Thus, there exist no more than n” intervals (2 — ;5,2 + -5) in the interval [0, 1].
Thus, we may bound

1
1 1

/ sp(x) < n2—3 =—.
0 n®  n

But, then I(f) < % for all n € P. By the archimedean property of the reals, this
implies that I(f) < 0. Then

0<I(f)<I(f)<0
implies I(f) = I(f) = 0 and f is integrable on [0, 1].

(b) Let a € [0,1] be an irrational number. Given ¢ > 0, choose n € P such that
1 < e. As remarked in part (a), there are finitely many rational numbers £elo,1]
such that ¢ < n. Let § be the minimum of the distances between § and « for ¢ < n.
Since « is irrational, none of these distances are zero; hence, o > 0.

If |[xt — a] < 6, then there are two options for f(z). If x is irrational, then
f(z) = 0. If z is rational, then x = . with p and ¢ having no common factors except

one and ¢ > n, since |z — a| < d. Thus, f(z) < % < e. Either way, we get

[f () = fla)] = [f(z)] <e

We have shown that f is continuous at .

Next, let 2 = ™ be a rational number in lowest terms (m and n have no common
factors except one). Put € = ﬁ Assume f is continuous at x. Then there exists
d > 0 such that |y — x| < § implies |f(y) — f(z)| < €. As remarked above, there
are finitely many § € [0,1] with ¢ < n and p,q € P. Hence, there exists a minimal
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distance d such that whenever |y — x| < d and y # z, we cannot have y = § with
g <n. Let d; = %min{d, d}. Then y = x + d; satisfies |y — x| < §. There are two
possibilities for f(y). If y is irrational, then f(y) = 0. If y = § is rational and in
lowest terms, then g > 2n. Hence, f(y) < % So regardless of case,

£ ) — F(2)] = |f(y) - %\ - % _

€.

This contradicts our assumption. We conclude that f is not continuous at any
rational number.
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