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18.014 Problem Set 6 Solutions 
Total: 24 points


Problem 1: A water tank has the shape of a right-circular cone with its vertex 
down. Its alititude is 10 feet and the radius of the base is 15 feet. Water leaks out 
of the bottom at a constant rate of 1 cubic foot per second. Water is poured into 
the tank at a constant rate of c cubic feet per second. Compute c so that the water 
level will be rising at a rate of 4 feet per second at the instant when the water is 2 
feet deep. 

Solution (4 points) The relationship of interest in this problem is V = πr2h/3, 
where V, r, h are, respectively, volume of water in the cone, radius of the cone at 
the maximum water height, and height of the water in the cone. Notice that all 
known quantities are related to volume and height, so determining V in terms of h 
will make things a bit simpler. Using similar triangles, we see that h/10 = r/15 or 
3h/2 = r. Substituting we get, V = 3πh3/4. Now, as both h and V depend on t we 
compute 

dV 9πh2 dh 
= . 

dt 4 dt 

Now, h = 2ft, dh/dt = 4ft/s, and dV/dt = (c − 1)ft3/s. That is, 

9π 4 
c − 1 = 

· 
4 = 36π. 

4 
· 

Thus we need c = (36π + 1)ft3/s. 

Problem 2: Let f(x) = 1 − x2/3 . Show that f(1) = f(−1) = 0 but that f �(x) 
is never zero in the interval [−1, 1]. Explain how this is possible in view of Rolle’s 
theorem. 

Solution (4 points) As (−1)2/3 = ((−1)1/3)2 = 1, the equalities f(1) = f(−1) = 0 
follow trivially. From Example 6 (page 163), we can set n = 3 and consider the limit 
for all x = 0. (Recall we have defined the n-th root for x < 0 when n is odd.) Then, 
following the argument of Example 3 (page 166), we see f �(x) = −2/3x−1/3 for all 
x = 0. In particular, wherever f � is defined, f � = 0. 

Rolle’s theorem states that for a continuous function f on [a, b] that is differen­
tiable on (a, b), if f(a) = f(b) then there exists c ∈ (a, b) such that f �(c) = 0. The 
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reason that the conclusion of Rolle’s theorem fails here is that one of the hypothesis 
of Rolle’s theorem is not true for the function f . Namely, f is not differentiable on 
all of (−1, 1), as f is not differentiable at zero. 

Problem 3: Let f(x) = 
1+

x
x2 . 

(a) Find all points x such that f �(x) = 0. 
(b) Examine the sign of f � and determine those intervals in which f is monotonic. 
(c) Examine the sign of f �� and determine those intervals in which f � is monotonic. 
(d) Make a sketch of the graph of f . 

Solution (4 points) (a) Notice first that g(x) = x and h(x) = 1+x2 are differentiable 
for all x by Example 3 (page 161). Moreover, as a2 > 0 for all a = 0, � h(x) > 0 for 
all x. So, we can freely apply Theorem 4.1 (the quotient theorem for derivatives) to 
see 

1 + x2 − x(2x) 1 − x2 

f �(x) = = . 
(1 + x2)2 (1 + x2)2 

Thus, f �(x) = 0 at x = ±1. 
(b) The value of 1−x2 determines the sign of f �(x). First, we proved earlier that poly­
nomials are continuous functions. By the intermediate value theorem, if f(x1) > 0 
and f(x2) < 0, there exists some x in the interval with endpoints x1, x2 such that 
f(x) = 0. By work in (a), we see that f �(x) must have a fixed sign on each of the 
intervals (−∞, −1), (−1, 1), (1, ∞). Observe 1 − x2 > 0 implies 12 = 1 > x2 > 0. 
Since the square root function is strictly increasing, it follows that 1 − x2 > 0 only 
if 1 > |x|. That is, f �(x) > 0 on (−1, 1) and f �(x) < 0 on (−∞, −1) ∪ (1, ∞). By 
Theorem 4.7, f is strictly decreasing on (−∞, −1], strictly increasing on [−1, 1], and 
strictly decreasing again on [1, ∞). 
(c) We compute the second derivative again using the quotient theorem. As be­
fore, since the function in the denominator is always positive, we have no trouble 
computing 

f ��(x) = 
−2x(1 + x2)2 − (1 − x2) 2(1 + x2) 2x 2x(x2 − 3)· · 

= . 
(1 + x2)4 (1 + x2)3 

Again, the denominator of f �� is always positive, so we consider the sign of 2x(x2 −3). 
As before, the continuity of this function and the Intermediate Value Theorem imply 
we need to consider the intervals (−∞, −

√
3), (−

√
3, 0), (0, 

√
3), (

√
3, ∞) since 

2f ��(x) = 0 for x = ±
√

3, 0. Observe that x − 3 < 0 if |x| < 
√

3. Thus, we quickly 
determine f �� > 0 on the intervals (−

√
3, 0) and (

√
3, ∞) and negative on the other 

two intervals. By Theorem 4.7, we see f � is strictly increasing on [−
√

3, 0] and 
[
√

3, ∞) and strictly decreasing on (−∞, −
√

3] and [0, 
√

3]. 
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Figure 1: Here’s a “sketch” of the graph. 

Problem 4: Suppose that f is differentiable at x = c. Show that |f | is differentiable 
at x = c provided f(c) = 0. Give a counterexample when f(c) = 0. 

Solution (4 points) We begin by observing that if f is differentiable at x = c then 
by Example 7 (page 163), f is continuous at x = c. Also, as f(c) = 0, Theorem 3.7 
implies there exists an interval I := (c − δ, c + δ) such that f(x) has the same sign 
as f(c) for all x ∈ I. First, assume f(c) > 0. Then for |h| < δ, f(x + h) > 0. Thus, 

lim 
|f |(c + h) − |f |(c) 

= lim 
f(c + h) − f(c)

= f �(c). 
h 0 h h 0 h→ →

Now, if f(c) < 0 then |f |(c) = −f(c) and for |h| < δ one has 

lim 
|f |(c + h) − |f |(c) 

= lim 
−f(c + h) − (−f(c)) 

= −f �(c). 
h 0 h h 0 h→ →

In either case, the limit exists and thus |f | is differentiable at x = c. 

For the second part of the problem, consider the function f(x) = x at x = 0. It is 
differentiable at x = 0 but |f |(x) = |x| is not differentiable at x = 0. 
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Problem 5: Let f(x) = xg(x) where g is a continuous function defined on [−1, 1]. 
Prove that f is differentiable at x = 0 and find f �(0) in terms of g. (The hardest 
part of this problem will be writing all of the details very carefully. Justify your 
equalities.) 

Solution (4 points) We use the definition of the derivative. That is, we show 

f(0 + h) − f(0)
lim 
h 0 h→

exists. By definition, this limit is f �(0). First, observe that f(0) = 0 g(0) = 0 and · 
f(0+h) = h g(h). Thus, f(h)−f(0) = h g(h). So the difference quotient simplifies 

h g(h) 
· ·

to · = g(h). As g is continuous on [−1, 1], it is certainly continuous at x = 0
h 

and thus limh 0 g(h) = g(0). It follows that →

f(0 + h) − f(0)
limh 0 = g(0)→

h 

and thus f �(0) = g(0). 

Problem 6: A function f is defined for all real x by the formula 

x 1 + sin t 
f(x) = 3 + dt. 

2 + t2 
0 

Without attempting to evaluate this integral, find a quadratic polynomial p(x) = 
a + bx + cx2 such that p(0) = f(0), p�(0) = f �(0), p��(0) = f ��(0). 

Solution (4 points) We begin by observing that � 0 1 + sin t 
f(0) = 3 + dt = 3 + 0 = 3. 

2 + t2 
0 

Now, we use the fundamental theorem of calculus. Note that g(t) = 1 + sin t and 
h(t) = 2+t2 are continuous functions. Moreover, h(t) = 0 for all � t ∈ R. By Theorem 
3.2, g(t)/h(t) is continuous for all t and thus we can use the fundamental theorem 
of calculus to compute f �(x). That is, 

d d x 1 + sin t 1 + sin x 
f �(x) = (3) + dt = . 

dx dx 0 2 + t2 2 + x2 
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Thus, simply by evaluating the function, f �(0) = 1/2. Finally, we find f ��(x) by 
using the quotient theorem for derivatives. As 2 + x2 > 0 for all x, the theorem 
applies for all values of x (in particular for x = 0). Therefore 

cos x(2 + x2) − (1 + sin x)(2x) 2 − 0

f ��(0) = = 1/2.
= 

x=0(2 + x2)2 4


Thus, we seek a quadratic polynomial p(x) such that p(0) = 3, p�(0) = 1/2, p��(0) = 
1/2. Observe that for p(x) = a + bx + cx2 , p(0) = a, p�(0) = b, and p��(0) = 2c. 
Thus, a = 3, b = 1/2, c = 1/4. The polynomial we seek is thus 

p(x) = 3 + 1/2x + 1/4x 2 . 

Bonus: Prove a pseudo-converse to (4). In particular, prove that if |f | is differen­
tiable at x = c and f is continuous at x = c, then f is differentiable at x = c. 

Solution (4 points) We give the solution, with slightly less detail than the previous 
solutions. 
First, observe that if f(c) = 0 then the continuity of f at x = c implies there exists 
δ > 0 such that f(c + h) and f(c) have the same sign for all |h| < δ. (This is by 
Theorem 3.7 as in Problem 4.) In that case, f �(c) = ±|f �(c) from simply considering |
the limit definition depending on the sign of f(c). 
Now, suppose f(c) = 0. Then 

f(c + h) − f(c) f(c + h) 
= . 

h h


As |f |�(c) exists,


lim 
|f(c + h)| 

= lim 
|f(c + h)| 

= L. 
h 0− h h 0+ h→ →

Observe that the first limit must be non-positive, as the numerator is non-negative 
and the denominator is negative. So, L ≤ 0. The second limit has non-negative 
numerator and positive denominator so, L ≥ 0. It follows that L = 0. Thus, 

f(c + h)

lim
 = 0.


h
h 0→

We now appeal to the squeeze theorem. Namely, as


−

f(c + h)


h

≤
 ≤


f(c + h)

h


f(c + h)

h
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we immediately conclude 
f(c + h)

lim = 0. 
h 0 h→

That is, f is differentiable at x = c (and f �(c) = 0). 
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