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18.014 Problem Set 8 Solutions 
Total: 24 points


Problem 1: Compute � 1 

xf ��(2x)dx 
0 

given that f �� is continuous for all x, and f(0) = 1, f �(0) = 3, f(1) = 5, f �(1) = 2, 
f(2) = 7, f �(2) = 4. 

Solution (4 points) Applying integration by parts (theorem 5.5), we have � 1 

xf �(2x) 
1 1
 1 1
 1 1 1 1

xf ��(2x)dx = f �(2x)dx = f �(2) − f(2) + f(0) =


0 
− .


2
 2
 2
 4
 4
 2
0 

We can use this theorem because x is differentiable with constant derivative 1 that 
is continuous and never changes sign, and f ��(2x) is continuous by hypothesis. 

Problem 2: Use the definition ax = ex log a to derive the following properties of 
general exponentials: 
(b) (ab)x = axbx . 
(c) axay = ax+y. 
(d) (ax)y = (ay)x = axy 

(e) Suppose a > 0, a = 1. Then y = ax if and only if x = loga y. 

Solution (4 points) (b) By the definition of the exponential function, part (ii) of 
theorem 3 of course notes M, part (i) of theorem 2 of course notes M, and the 
definition of the exponential function, we have 

(ab)x = e x log(ab) = e x log(a)+x log(b) = e x log(a)e x log(b) = a xbx . 

(c) By the definition of the exponential function, part (i) of theorem 2 of course 
notes M, and the definition of the exponential function, we have 

x y x log(a) y log(a) (x+y) log(a) x+ya a = e e = e = a . 

(d) After twice using the definition of the exponential function, using that the ex­
ponential function and the logarithmic function are inverses, and again using the 
definition of the exponential function, we obtain 

(a x)y = ey log(ax) = ey log(ex log a) = eyx log(a) = axy . 
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The same argument with the roles of x and y interchanged yields 

(ay)x = e x log(ay ) = e x log(ey log a) = exy log(a) = axy. 

Combining the two yields the statement in part (d). 
(e) Suppose y = ax . By the definition of the exponential function, we know y = 
ex log(a). Taking the logarithm of both sides and using that the logarithm and the 
exponential function are inverses, we obtain log(y) = x log(a). Since a = 1, log(a) = 

log(y) 
� �

0. Thus, we may divide by log(a) to get x = 
log(a) . But, this is our definition of 

log y. Writing this argument backwards implies the converse statement. a 

Problem 3: (a) Use integration by parts to deduce the formula 

sin2(x)dx = − sin(x) cos(x) + cos 2(x)dx. 

In the second integral, write cos2(x) = 1 − sin2(x) and thereby deduce the formula 

1 1 
sin2(x)dx = x − sin(2x). 

2 4 

(b) Use integration by parts and the result of part (a) to deduce 

x sin2(x)dx = 
1

4 
x 2 − 

1

4 
x sin(2x) − 

1

8 
cos(2x). 

Solution (4 points) (a) Putting f(x) = g�(x) = sin(x) in formula (5.23) and using 
d sin(x) = cos(x), sin(x) = − cos(x) yields 
dx 

sin2(x)dx = − sin(x) cos(x) + cos 2(x)dx. 

Now, if we substitute cos2(x) = 1 − sin2(x) and use part (e) of theorem 3 of course 
notes L, then our expression becomes 

1 
sin2(x)dx = − sin(2x) + 1dx − sin2(x)dx. 

2 

Integrating 1dx, moving the sin2(x)dx to the other side of the equation, and 
dividing by 2 yields � 

1 1 
sin2(x)dx = − sin(2x) + x. 

4 2 
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(b) Putting f(x) = x and g�(x) = sin2(x) in formula (5.23), we get 

x sin2(x) = x sin2(x) − sin2(x). 

Using part (a), we obtain � � � � � � 
1 1 1 1 

x sin2(x) = x −
4 

sin(2x) + 
2 
x − −

4 
sin(2x) + 

2 
x 

1 1 2 1 
= − x sin(2x) + x cos(2x). 

4 4 
− 

8 

Problem 4: Evaluate the integral 

1 + 3 cos2(x) sin(2x)dx. 

Solution (4 points) Put u = 1 + 3 cos2(x). Then du = −6 cos(x) sin(x)dx = 
−3 sin(2x)dx by part (e) of section L of the course notes. Applying the method 
of substitution, we obtain 

−1 √
udu = 

−2 
u 3/2 . 

3 9 

Plugging back in for u, our answer is 

−2 � 
1 + 3 cos2(x) 

�3/2 
. 

9 

Problem 5: (a) Find a polynomial P (x) such that P �(x) − 3P (x) = 4 − 5x + 3x2 . 
Prove there is only one solution. 
(b) If Q(x) is a given polynomial, prove that there is one and only one polynomial 
P (x) such that P �(x) − 3P (x) = Q(x). 

Solution (4 points) (a) Put P (x) = −x2 + x − 1. Then P �(x) = −2x + 1 and 
P �(x) − 3P (x) = 3x2 − 5x + 4. Note that deg(P �(x) − 3P (x)) = deg P (x); hence 
deg P (x) = 3. If P (x) = ax2 + bx + c, then P �(x) = 2ax + b and 

P �(x) − 3P (x) = −3ax 2 + (2a − 3b)x + (b − 3c) = 3x 2 − 5x + 4. 
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Because there is an unique solution to the equations −3a = 3, 2a − 3b = −5, and 
b − 3c = 4, our solution must be the only one. 

(b) First, we show there is at most one solution to the equation P �(x) − 3P (x) = 
Q(x). If P1 and P2 are two distinct solutions, then P �(x) − 3P1(x) = P �(x) − 3P2(x).1 2

In particular, (P1 − P2)
� = −3(P1 − P2). However, if P1 − P2 is not constant, then 

deg(P1 − P2) + 1 = deg((P1 − P2)
�). Since two polynomials must have the same 

degree if they are equal, we deduce that P1 − P2 is constant. Clearly, this constant 
must be zero and P1 = P2, a contradiction. We conclude that there can be at most 
one solution to our equation. 
Now, we show that there exists a solution to the equation P �(x)−3P (x) = Q(x). We 
proceed by induction on deg Q. For the base case deg Q = 0, we may take P = −1

3 Q. 
Now for the inductive step. Suppose the statement is true for all polynomials Q of 
degree k < n. We will prove the statement for all polynomials Q of degree n. 
Let Q = cnx

n + Q1 be a polynomial of degree n where Q1 is a polynomial of degree 
at most n − 1. Now, by the induction hypothesis, we may find a solution P1 to the 
equation P1

� − 3P1 = Q1 − 
3
1 ncnx

n−1 since Q1 − 
3
1 ncnx

n−1 is a polynomial of degree 
at most n − 1. Let P = P1 − 

3
1 cnx

n . Then 

1 n nP � − 3P = P1
� − 3P1

� − 
3 
ncnx n−1 + cnx = Q1 + cnx = Q. 

The desired result follows. 

Problem 6: Evaluate � 
x4 + 2 

dx. 
x4 + x3 + x2 

Solution (4 points) Note x4 + x3 + x2 = x2(x2 + x + 1). Using partial fractions, we 
observe 

x4 + 2 x3 + x2 − 2 2x − 2 −x + 1 
x4 + x3 + x2 

= 1 − 
x2(x2 + x + 1) 

= 1 − 
x2 

− 
x2 + x + 1 

. 

Note 1 = x, 2x−2 = 2 log |x| + 2x−1 . To evaluate the last term, we write 2x

−x + 1 1 1 1 
x2 + x + 1 

= −
2 

log |x 2 + x + 1| +
2 x2 + x + 1 

. 

Now, we write 
1 1 

x2 + x + 1 
= 

(x + 1
2 )

2 + 3
4 

. 
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Using the identity on the top of page 263, we find 

1 4 4(x + 1
2 ) = arctan . 

(x + 1
2 )

2 + 3
4 

3 3 

Combining all of these terms, we obtain � � 1 � 

x

x4 + 2 
dx = x − 2 log(x) − 2x−1 + 

1

2 
log |x 2 + x +1|− 

2

3 
arctan 

4(x 

3

+ 
2 ) . 

4 + x3 + x2 

Bonus: Let f be a continuous function. Prove that � � �� � �� �� � � � � x x x u2 u1f(u)(x − u)n 

n! 
du = · · · f(t)dt du1 · · · dun . 

0 0 0 0 0 

Solution (4 points) We prove the statement by induction on n. The base case n = 0 
is the tautology � � x x 

f(u)du = f(t)dt. 
0 0 

Now, assume that the statement is true for n − 1. We prove the statement for n. 
Integration by parts yields � x �� u � � � x �� u � 

xf(u)(x − u)n 

= f(t)dt 
(x − u)n �� + f(t)dt 

(x − u)n−1 

. 
n! n! 0 (n − 1)!0 0 0 0 

u
The first term is zero. Define g(u) = 

0 f(t)dt. Then we may apply the inductive 
hypothesis to obtain � � �� � �� � � � x x un u2(x − u)n−1 

g(u) du = g(u1)du1 dun . 
(n − 1)! 

· · · · · · 
0 0 0 0 

Plugging in for g, we get � � �� � �� �� � � � � x x un u2 u1f(u)(x − u)n 

0 n!
= 

0 0 
· · · 

0 0 
f(t)dt du1 · · · dun 

as desired. 
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