18.014 Problem Set 9 Solutions
Total: 24 points

Problem 1: Integrate

(a)

dx
/(x2—4x+4)(:v2—4$+5)'

/ dx
xt — 202

(4 points) (a) We use the method of partial fractions to write
1 A B (Cx+ D)

(x — 2)%(2? — 4z +5) x—2+(:r;—2)2 2 —4x+5

(b)

Making a common denominator yields the expression
Az — 2)(2* — 42 +5) + B(2* — 42 +5) + (Cz + D)(z — 2)* = 1.

Plugging in x = 2, we get B = 1. Taking the derivative and plugging in x = 2
yields A = 0. Solving for C' and D, we have (z* — 4z + 5) + (Cz + D)(z — 2)* = 1.
Comparing z* terms, we see C = 0. Comparing z? terms, we sece D = —1. Thus,

we have
/ dz _/ dz _/ dz
(22 —da +4)(22 — 4z +5) ) (v—2)? x? —4x +5

(Give yourself a pat on the back if you noticed from the start that the terms x*>—4z+5
and 22 — 4x — 4 differed by 1 and got this decomposition without solving for A,B,C,
and D).

Now the first integral is —(z — 2)~' + C. To do the second integral, we complete
the square and substitute u = x — 2

/x2—4x+5:/m:/ug—_'_l:aTCtanu+C:arctan(x—2)+C,

Thus, our final answer is

dx -
/(1’2—437+4)(:v2_43;_|_5) = —(z —2)"" — arctan (v — 2) + C.



(b) Hopefully, after doing part (a), everyone observed

1 1 1 1 d 1 1 1 1
————=—|—————=] an = - :
22(22 —2) 2 \a?2—-2 22 2—2 22 \z—-vV2 z+2

If not, one can figure this out using partial fractions. Now, we have

/ﬁz/@\l@ (I—lx/?—x:\/?) _2%2) dz

(\/_<10g|x—\/_| log|x+\/_|) >+C

Problem 2: Let A = fol ti—tldt. Express the values of the following integrals in
terms of A:

a e—t 1 tet2 1 et 1 .
—dt (b dt —dt (d log(1 + #)dt.
<a>/alt_a_1 <>/O — <c>/0 e <>/0 ¢ log(1+ 1)

(4 points) For part (a), we substitute ¢ = —u + a to get

0 u—a 1 u
—/ € du = —e_“/ ¢ du = —e “A.

For part (b), we substitute u = t? to get

1 [t e 1
—/ € du = = A.
2/, u+1 2

For part (c), we integrate by parts to get

1 1 et d e A
f=—-+1+A
0+/0 t+1 2+ *

For part (d), we integrate by parts to get

et

C(t+1)

t ! b
log(1+1)| -~ = elog(2) — A.
e’ log( +t)0 /0 1—|—tdt elog(2)

Problem 3: Let F(z fo t)dt. Determine a formula (or formulas) for comput-
ing F(z) for all real x 1f fis deﬁned as follows:
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LEALE 2t A
(b) f<t>={ L[t if [t >1 }
(c) f(t) =M.

(4) f(t) = max{1,#’}

(4 points) (a) If t <0, then f(t) = 0. If ¢t > 0, then f(¢) = 4¢*. Hence, if
x <0 then F(x) =0, and if > 0 then

* 4
F(z) = 4/ t2dt = —a°.
0 3

(b) If # < —1, then
Pl /Ox F(t)dt = /0_1(1 — tH)dt + /x(1 +t)dt = <t — g

-1

SR A D S
B 3 o 2 2 6 v 9
If -1 <2<, then
x x ) t3 T 1,3
@= [ swa=[a-e ( 3>0x3
If 1 <z, then
T 1 x 3 1 t2 .
F(l’):/ f(t)dt:/ (1—t2)dt—|—/ (1—t)dt: (t__) +(t——>
0 0 1 3 0 2 1
.1'2 1 12
3+$ 5 —1—2 +z 5

(c) If x >0, then

F(z) = /Ox ft)dt = /Om e ldt = —e!

F(z) = /Ox f(t)dt = /OI eldt = ¢

(d) Note t2 < 1if [t| < 1 and t* > 1if |t| > 1. Hence, f(t) = 1if |t| < 1 and
f(t) =t*if |t| > 1. Thus, for x < —1, we have

=—e "4 1.
0

If x <0, then

X
=" — 1.
0

1 x3

x —1 :r:2 SL’S 2

F = tHdt = dt = —1 — - = — — =,

(x) /Of() / +/_1 T
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For —1 < x <1, we have

Fla) = /Oxf(t)dt _ /:dt .

And for x > 1, we have
F(:c):/ f(t)dt:/dt+/ Pdt=1+> — - =212
0 0 1 3 3 3

w

Problem 4: Use Taylor’s formula to show

(a)

n (_1)k—1x2k—1 |$|2n—1
. _ (=" < '
sin(@) = ) —pp oy Panle), where [Ban(0)] < 5
(b) o
e (D) L
cos(x) = ; W + Eopy1(z), where [Ey,iq(z)| < (2n +2)!

(4 points) (a) By Taylor’s formula (Theorem 7.6), we know
2n (1) 1
sin(z) =Y (sin™(0))a" + Eyp(2).

!
1=0

Note sin?(0) = 4sin(0) = 0, sin*™(0) = cos(0) = 1, and sin**™(0) = — cos(0) =
(—1)k—172k—1

T To approximate the error term, we

—1. Thus, our sum becomes Y ;_,
use theorem 7.7 to conclude
| x|2n+1

| Egp ()| < M———— where M = sup |sin®"™V(c)|.
(2n +1)! el <]

Since sin®*Y(c) = 4 cos(c), we observe |M| < 1, and the bound for our error term

becomes |Ey,(x)| < Lﬂ“, as desired.

— (2n+1)!

(b) This time we observe cos®*V(0) = +sin(0) = 0, cos™)(0) = cos(0) = 1,
and cos*2)(0) = — cos(0) = —1. Plugging this into Taylor’s formula yields

n(—1)k g2k
cos(x) = Z % + Eopp1(x).

k=0
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To approximate the error term, we again use theorem 7.7 together with the bound

| cos®W(c)| < 1 for all I. This yields the estimate |Eg,41(z)| < |;L2:;)2

Problem 5: Evaluate the following limits:
T+1)—2("—1 log(1 —
(o) lig LE TV =221 ) gy loaU ¥ 2) — 2
20 a3 z—0 1 — cos(z)

(4 points) (a) We apply L’Hopital’s rule (Theorem 7.9). Observe that

both the numerator and the denominator are differentiable and take the value zero
at 0. We observe - (z(e” +1) — 2(e® — 1)) = ze” — e” + 1 and L23 = 32%. Each
of these functions is differentiable and takes the value zero at 0. Differentiating
again, we get - (ze” — e” + 1) = ze® and - (32?) = 6. Both of these functions are
differentiable and take the value zero at 0 Fmally, we differentiate both functions
one more time to get - (ze”) = e” + ze” and - (6x) = 6. Applying L'Hoptal’s rule

three times, we get

lim z(e®+1)—=2(e*—=1) .. e+ ze” 1.
r—0 J]?’ x—0 () 6

The last equality comes from observing that the numerator and denominator are
continuous functions and plugging in x = 0.

(b) Again, we use L'Hopital’s rule (Theorem 7.9). Observe that both the numerator
and denominator are differentiable at 0 and take the value zero at 0. Computing,
we get L(log(l+z) — z) = (1+;x) — 1 and £(1 — cos(z)) = sin(z). Both of these
functions are differentiable at 0 and take the value zero at 0. Computing again, we

get - (1+CC —-1) = (HI)Q and -L sin(z) = cos(z). Applying L'Hopital’s rule twice,
we get
log(1 — —1/(1 2
T L) Bt VA ) M
=0 1 — cos(x) z—0  cos(x)

The last equality comes from observing that the numerator and denominator are
both continuous at zero and plugging in x = 0.

Problem 6: (a) Compute the limit

lim sin(z) — ze”” + 723 /6

»=0  sin?(x)sin(x3)

(b) Show that if |z| < 1, then

e — (1+z+2°/2)| < |2%/2|.
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(c) Show that if |t| < 1, then the approximation

t t3 t5
de ~t —
/06 SRR T

involves an error in absolute value no more than |¢7/14].

(4 points) For part (a), we apply L'Hopital’s rule four times. Let f(x) =
sin(z) — ze** 4+ 723/6 be the numerator and let g(z) = sin®(z)sin(z?) be the de-
nominator. Note f/(z) = cos(z) — e** — 222" + 722/2, f'(x) = —sin(z) —
6re®” — 4xde” + Tz, f"(z) = —cos(x) — 6% — 24x%e”” — 8zte”” + 7, fW(z) =
sin(z) — 60ze®” 4 23(f1(x)), and fO®)(z) = cos(x) — 60e*” + z(f2(z)). One sees that
f is 5 times differentiable at 0, f*)(0) =0 for £ =0,1,...,4, and f®(0) = —59.
Next, we write g(x) = hy(2)ho(x) where hy(x) = sin®(z) and hy(x) = sin(2?). We
leave it as exercise to the reader to verify by induction that

§9w) =3 () e )

k=0

(z) — sin*(x)), hy(z) =
6 cos(z?) — 1823 sin(23) —
h4(0) = h”(O) = 0. These
0 for £k =0,...,4. Note

Now, we compute h)(x) = 2sin(z) cos(x ) hi(z) = 2 (cos
322 cos(x3), hY(z) = 6x cos(z?) — 9zt sin(z?), and hYy (z) =
362° sin(2) — 2725 cos(z?). Note hy(0) = b} (0) = hy(0)
facts together with the above formula prove that h®)(z
R/(0) = 2, hY'(0) = 6. Thus, we get ¢® = 120.
Applying L’Hopital’s rule 5 times, we end up with

)=

sin(z) — ze”” + 723 /6 59
lim 5 - = ——.
z—0  sin®(z) sin(23) 120

(b) By Taylor’s theorem, we know e* = 1+ z + 2%/2 + F3 where E3 = %:ec for some
¢ between 0 and z. If |x| < 1, then |¢| < 1 and e® < e because €' is an increasing
function of ¢. Since e < 3, we have |Es3| < % as desired.

(¢) Plugging in 2 in our formula from part (b), we get that e*” = 1 + 22 + % + Ej5
where |E3| < %6 whenever |z| < 1. Integrating, we get

/t $2d 14 L t3 L t5 - t7
e T — —
; 3710/ 14

whenever |t| < 1. Note that we used the comparison theorem for integrals to bound
| Jy Bs(x)dal.




Bonus: Give an example of an infinitely differentiable function f such that f is not
identically zero but T,,f = 0 for all n. Here T, f denotes the nth Taylor polynomial
of f centered at zero.

(4 points) Consider the function

e V7 if x>0
f<”"“°)—{0 ifz<0 [

Clearly f is infinitely differentiable on the interval (—oo,0). To show that f(x) is
infinitely differentiable on the interval (0, 00), we show by induction on n that f is
n times differentiable for x > 0 and f™(z) = pn(%)e_l/f‘”2 for some polynomial p,,
whenever x > 0. . The base case n = 0 follows from the definition of f. For the
inductive step, we assume [ (z) = p,(L)e™ ** and we show that there exists a
polynomial p, 4 such that "1 (z) = pnﬂ(%)e_l/zQ.

To do this, we simply differentiate f(™(z) = pn(%)e_l/ﬁ. By the chain rule and the
product rule,

PO —— (l) RV (l) . i3 =y
A

Setting pn.1(t) = —t%p,(t) — 2t3p,(t) completes the inductive step.
In particular, we have shown that f(x) is infinitely differentiable on the interval
(0,00). It remains to show that f is infinitely differentiable at 0. We need a lemma.

Lemma: If p is a polynomial, then

1
lim p (—) e /7 = .
x—0 x

Proof: Given € > 0, we must find § > 0 such that |z| < § implies |p (1) e V7| < e
Put ¢ = 1/z, and let p(t) = Y7 _,cxt® Then |p(t)] < (n + 1) max}_y{|ck|}]"
if t > 1. Note that ¢’ > S0, i—f by Taylor’s formula (Theorem 7.6) and the
bound on the error term (Theorem 7.7) together with the fact that the derivative
of e’ is never negative. If we choose 2m > n, then we see that et > % and if

2m)
t > (n+1)maxp_i{|cx|} = 5, we conclude that




Plugging in ¢ = 1/x and taking the inverse of the above equality, we note that

/(2)

whenever x < §. This proves the lemma.

1.2
e V7 < ¢

Back to showing that f is differentiable at x = 0 for every n. Since f((x) =
pn (2) e~ Y/** we note that

") (z) — 1 >
lim M = lim ¢, <—) e 1/
x

z—0t x z—0t

Here ¢, (t) = tp,(t). By the lemma, the above limit is zero. Since the limit from the
right is obviously zero, we conclude that f( is differentiable at zero with derivative
zero for all n.

Finally, T,,f = f™(0)2" /n! by definition. Since f™ = 0 for all n, we have T),f = 0
for all n. However, f is not identically zero. For instance, f(1) = 1/e.
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