Practice Exam 2 Solutions

Problem 1. Find 1+h 42 1 2
et — [ etdt
lim

h—0 h(3 + h?)

First, using that the limit of a product is the product of limits, we get

1+h t2 1 t2 1+h t2 1 t2
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Because ﬁ is a continuous function at A = 0, the second limit is % Define

g(:v)—/ et dt.
0

—9(1)

Then the first limit is

iy e g(1+h)
g (1) = lim h

1

By the fundamental theorem of calculus, ¢'(1) = e ‘= Mutiplying the two limits

together, our final answer is £.

Problem 2. Find (f')/(0) where f(z) = [ cos(sin(t))dt is defined on [—%, Z].

First, we check that f is strictly increasing and continuous on [—7, 7].
To show f is stricly increasing on [—Z, Z] it is enough to show f’(x) > 0 for all

2772
r € (—%,5). By the fundamental theorem of calculus, f'(x) = cos(sin(z)). For
r € (=%,%), we have sin(x) € (—1,1), and for y € (—1,1), we have cosy > 0. Thus,
[ is strictly increasing on [—7, 7]. Moreover, f is continuous on [—7, 7] by theorem

3.4 and differentiable on (—%, 7) by the fundamental theorem of calculus (theorem
5.1). Then by theorem 6.7,

Since f(0) =0, and f'(0) = cos(sin(0)) = 1 by the fundamental theorem of calculus
(theorem 5.1), we deduce (f~1)(0) = 1.



Problem 3: In each case below, assume f is continuous for all z. Find f(2).
(2) )
/ ft)dt = 2*(1 + ).
0
(b)
f(@)
/ t2dt = 2*(1 + ).
0

(a) Differentiating both sides of the equality yields
f(z) =22(1 + z) + 2° = 32* + 2.

To differentiate the left hand side, we used the fundamental theorem of calculus. To
differentiate the right hand side, we used the product rule. Plugging in x = 2 yields

£(2) = 16.

(b) For this part, we integrate the left hand side to get

f(x)?®
3

= 2°(1+ ).

Plugging in = = 2 and solving for f(2), we get f(2) = (36)%.

Problem 4. Give an example of a function f(z) defined on [—1, 1] such that
e f is continuous and differentiable on [—1,1].

e f’is not continuous for at least one value x € [—1,1].

Let
z?sin(L) if x # 0
f(x)_{o ifz=0 [
For x # 0, f(x) is a product of compositions of differentiable functions. Thus, f is
differentiable for z € [—1, 1], z # 0. Note

h2

h

h?sin(3)

= |h|.
. i




Thus, using the squeezing principle (theorem 3.3), we deduce

f(h) — f(0)
h
We conclude that f/(0) exists and equals zero. By a theorem from class, f is con-

tinuous on [—1, 1] because f is differentiable on [—1,1]. Next, we need to show that
f" is discontinuous at x = 0. By the product rule and the chain rule, we have

f'(z) = 2xsin(1/x) — cos(1/x) if x # 0,

lim
h—0

-0

and we know f’(0) = 0. Assume [’ is continuous at x = 0. Then there must exist
6 > 0 such that |z| < ¢ implies that |f/(z)] < 5. Choose 29 = 57 < § with n a
positive integer. Then

1
f(xo) = 2% sin(27n) — cos(2mn) =0—1= —1.

But, by assumption | ()| < 3. This is a contradiction. Thus, f’ is not continuous
at x = 0.

Problem 5. Let f(z) be continuous on [0, 1], and assume f(0) = f(1). Show that
for any n € Z7, there exists at least one x € [0, 1] such that f(z) = f(z + 1).

Consider the continuous function g, (z ) = f(z) — f(z+ %) on the interval
[0, 2=1]. Consider the set g,(0), gn(%),..., ga (1), If g,(5) = 0 for some k then

fl@+ )= f(z+ £+ 1) and we are done. Hence we may assume that g,(£) # 0
for k=0,1,...n— 1. Note

ggn (S) = f(0) — f(1) =0.

If gn(k) > 0 for k = 0,...,n — 1, then the sum is positive, and if gn(%) < 0 for
k=0,. — 1, then the sum is negative. Since the sum is neither positive nor
negatlve there must be k; and k» such that g,(%) > 0 and g,(%22) < 0. Putting
y1 = min{ > L} kQ} and y, = max{~* LY kQ} we note that g, (y;) and g, (y2) have opposite
signs. Therefore by the mtermedlate value theorem, there must be y € (y1,y2) such

that g,(y) = 0. In particular,
1
fy) =17 (y + —)
n

as desired.
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