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Separation of Variables 

We’ll now look at the technique we used to solve the previous problem and 
discuss what other sorts of problems that method is useful for. 

In general, the method of separation of variables applies to differential equa­
tions that can be written as: 

dy 
= f(x)g(y). 

dx 

In our previous example, f(x) = −x and g(y) = y. 
The key step in the method is the separation of variables. It is possible 

because Leibnitz designed his notation to make this work nicely, allowing us to 
treat differential calculations as if they were ordinary arithmetic. 

dy 
dx 

= f(x)g(y) 

dy 
g(y) 

= f(x) dx which we can write as 

1 
h(y) dy = f(x) dx where h(y) = 

g(y) 
. 

Next we antidifferentiate both sides of the equation: 

H(y) = h(y) dy; F (x) = f(x) dx 

2 
In our example, H(y) = ln |y| and F (x) = −2 

x . 
These antiderivatives are equal, so we get: 

H(y) = F (x) + c (Again, we only need one constant c.) 

This is what we call an implicit equation; in our example we had ln y = −x2/2+c. 
It doesn’t tell us exactly what y is but it does describe y implicitly. In order 
to solve for y explicitly we need the inverse function H−1; in our example this 
inverse was the exponential function and the explicit equation was y = Ae−x 2/2 . 

In practice, it’s often easy to find the implicit equation and quite messy 
to perform the inverse operation. In that case we might leave the solution in 
implicit form. 
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almost exactly the answer we did get, if a = ±A and A > 0. 
Professor Jerison didn’t bother with this because it makes the calculation 

more complicated. Once he had solved the problem for y > 0, he knew from 
previous experience what the answer would be and he could skip directly to 
that and check his work. (The exponential function comes up all the time, so 
you too will want to be completely comfortable dealing with it.) 
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This still leaves out the case y = 0. This is an extremely boring solution, 
but it is still a solution to this problem. You can verify that y = 0 (i.e. a = 0) is 

da solution to this problem by plugging 0 in for y in the equation dx + x y = 0 
or dy = −xy.dx 

It’s not so surprising that we missed that solution, because in the process of 
separating variables we divided by y. If you divide by something you may have 
problems when that thing equals zero, or miss that solution. To avoid these 
problems, take note of when you divide by something that might be zero and 
double check that case after you’ve finished your calculations. 

Remark 2: We had: 

h(y) dy = f(x) dx 

which evaluated to: 
H(y) = F (x) + c. 

We could have written H(y) + c1 = F (x) + c2, but this is equivalent to H(y) = 
F (x) + c2 − c1 = F (x) + c. To save time and writing, we write down only one 
arbitrary constant when integrating both sides of an equation. 

Remark 3: In our example, the additive constant c turned into a multi­
2

plicative constant A when we calculated e−x /2+c . In general there will always 
be a free constant in the solution to a differential equation, but that constant 
will not always be additive. 
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