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PROFESSOR: Today, I'm going to continue the idea of setting up integrals. And what we'll deal with is

volumes by slices. By slicing. And it's lucky that this is after lunch. Maybe it's after breakfast for

some of you, because there's the typical way of introducing this subject is with a food analogy.

There's a lot of ways of slicing up food. And we'll give a few more examples than just this one.

But, suppose you have, well, suppose you have a loaf of bread here. So here's our loaf of

bread, and I hope that looks a little bit like a loaf of bread. It's supposed to be sitting on the

kitchen counter ready to be eaten. And in order to figure out how much bread there is there,

one way of doing it is to cut it into slices. Now, you probably know that bread is often sliced like

this. There are even machines to do it. And with this setup here, I'll draw the slice with a little

bit of a more colorful decoration. So here's our red slice of bread. It's coming around like this.

And it comes back down behind. So here's our bread slice. And what I'd like to figure out is its

volume.

So first of all, there's the thickness of the bread. Which is this dimension, the thickness is this

dimension dx here. And the only other dimension that I'm going to give, because this is a very

qualitative analysis for now, is what I'll call the area. And that's the area on the face of the

slice. And so the area of one slice, which I'll denote by delta V, that's a chunk of volume, is

approximately the area times the change in x. And in the limit, that's going to be something like

this. And maybe the areas of the slices vary. There might be a little hole in the middle of the

bread somewhere. Maybe it gets a little small on one side. So it might change as x changes.

And the whole volume you get by adding up. So if you like, this is one slice. And this is the

sum. And you should think of it in a sort of intuitive way as being analogous to the Riemann

sum, where you would take each slice individually. And that would look like this. Alright, so

that's just a superficial and intuitive way of looking at it.

Now, we're only going to talk about one kind of systematic slice. It's already on your problem

set, you had an example of a slice of some region. But we're only going to talk systematically

about something called solids of revolution. The idea here is this. Suppose you have some

shape, some graph, which maybe looks like this. And now I'm going to revolve it. This is the x-



axis and this is the y-axis. In this case, I'm going to revolve it around the x-axis. If you do that,

then the shape that you get is maybe like this. If I can draw it a little bit. It's maybe a football.

So that's the shape that you get if you take this piece of disk and you revolve it around. If you

had made this copy underneath, it still would have been the same region. So we only pay

attention to what's above the axis here. So that's the basic idea.

Now, I'm going to apply the method of slices to figure out the volume of such regions and give

you a general formula. And then apply it in a specific case. I want to take one little slice of this

football, maybe a football wouldn't work too well, maybe we should go back to a loaf of bread.

Anyway, the key point is that you never really have to draw a 3-D picture. And 3-D pictures are

awful. They're very hard to deal with. And it's hard to visualize with them. And one of the

reasons why we're dealing with solids of revolution is that we don't have as many visualization

problems. So we're only going to deal with this. And then you have to imagine from the two-

dimensional cross-section what the three-dimensional picture looks like. So we'll do a little bit

of an exercise with the three-dimensional picture. But ultimately, you should be used to,

getting used to, drawing 2-D diagrams always. To depict the three-dimensional situation. Since

it's much harder to draw.

The first step is to consider what this slice is over here. And again it's going to have width dx.

And we're going to consider what it looks like over on the 3-D picture. So it starts out being

more or less like this. But then we're going to sweep it around. We're revolving around the x-

axis, so it's spinning around this way. And if you take this and think of it as being on a hinge,

which is down on the x-axis, it's going to swing down and swoop around and come back.

Swing around. And that traces out something over here. Which I'm going to draw this way. It

traces out a disk. So it's hard for me to draw, and I'm not going to try too hard. Maybe I drew it

more like a wheel, looking like a wheel. But anyway, it's this little flat disk here. And so the

method that I'm describing for figuring out the volume is called the method of disks. This is

going to be our first method.

Now I'm going to apply the reasoning that I have up on the previous blackboard here. Namely,

I need to get the volume of this chunk. And the way I'm going to get the volume of this chunk is

by figuring out its thickness and its area, its cross-sectional area. And that's not too difficult to

do. If this height, so this height is what we usually call y. And y is usually a function of x, it's

varying. And this particular distance is y. Then the area of the face is easy to calculate.

Because it's a circle, or a disk if you like, with this radius. So its area is pi y^2. So that's, if you



like, one of the dimensions. And then the thickness is dx. So the incremental volume is this. So

this is the method of disks. And this is the integrand. Now, there's one peculiar thing about this

formula. And there are more peculiar things about this formula. But there's one peculiar thing

that you should notice immediately. Which is that I'm integrating with respect to x. And I

haven't yet told you what y is. Well, that will depend on what function y = f(x) I use. So we have

to plug that in eventually. If we're actually going to calculate something, we're going to have to

figure that out. There's another very important point which is that in order to get a definite

integral, something I haven't mentioned, we're going to have to figure out where we're starting

and we're ending the picture. Which is something we dealt with last time in 2-D pictures.

So let's deal with an example. And we'll switch over from a football to a soccer ball. I'm going

to take a circle, and we'll say it has radius a. So this is 0 and this is a. And I'm putting it in this

particular spot for a reason. You can do this in lots of different ways, but I'm picking this one to

make a certain exercise on your homework easier for you. Because I'm doing half of it for you

right now. Appreciate it, yeah. I'm sure especially today it's appreciated. So again, the formula

has to do with keeping track of these slices here. And we're sweeping things around. So the

full region that we're talking about is the volume of the ball of radius a. That's what our goal is,

to figure out what the volume of the ball of radius a is. Alright, again as I say, the thing sweeps

around. Coming out of the blackboard, spinning around on this x-axis. So the setup is the

following. It's always the same. Here's our formula. And we need to figure out what's going on

with that formula. And so we need to solve for y as a function of x. And in order to do that,

what we're going to do is just write down the equation for the circle. This is the circle. It's

centered at (a, 0), so that's its formula. And now there's one nice thing, which is that we really

didn't need it to find the formula for y, we only needed to find the formula for y squared.

So let's just solve for y^2 and we won't have to solve a quadratic or anything. Take a square

root, that's nice. This is a^2 - (x^2 - 2ax + a^2). The a^2's cancel. These two terms cancel.

And so the formula here is 2ax - x^2. Alright now, that is what's known as the integrand. Well,

except for this factor of pi here. And so the answer for the volume is going to be the integral of

pi times this integrand, (2ax - x^2) dx. And that's just the same thing as this.

But now there's also the issue of the limits. Which is a completely separate problem, which we

also have to solve. The range of x is, from this leftmost point to the rightmost point. So x

varies, starts at 0, and it goes all the way up to what, what's the top value here. 2a. And so

now I have a completely specified integral. Again, and this was the theme last time, the whole



goal is to get ourselves to a complete formula for something with an integrand and limits. And

then we'll be able to calculate. Now, we have clear sailing to the end of the problem. So let's

just finish it off. We have the volume is, if I take the antiderivative of that, that's pi ax^2, whose

derivative is 2ax, minus x^3 / 3. That's the thing whose derivative is -x^2. Evaluated at 0 and

2a. And that is equal to pi times, let's see. 2^2 = 4. So this is 4a^3 - 8a^3 / 3, right? And so all

told, that is, let's see, (12/3 - 8/3) pi a^3. Which is maybe a familiar formula, 4/3 pi a^3. So it

worked, we got it right.

Let me just point out a couple of other things about this formula. The first one is that from this

point of view, we've actually accomplished more then just finding the volume of the ball. We've

also found the volume of a bunch of intermediate regions, which I can draw schematically this

way. If I chop this thing, and this portion is x here, then the antiderivative here, this region

here, which maybe I'll fill in with this region here, which I'm going to call V(x), is the volume of

the portion of the sphere. Volume of portion of width x of the ball. And, well, the formula for it is

that it's the volume equals pi (ax ^2 - x^3 / 3). That's it. So we've got something which is

actually a lot more information. For instance, if you plug in x = a, not surprisingly, and this is a

good idea to do because it checks that we've actually got a correct formula here. So if you like

you can call this a double-check. If you check V(a), this should be the volume of a half-ball.

That's halfway. If I go over here and I only go up to a, that's exactly half of the ball. That had

better be half, so let's just see. V(a) in this case is pi, and then I have (a^3 - a^3 / 3). And that

turns out to be pi times a total of 2/3 a^3, which is indeed half.

Now, on your problem set, what you're going to want to look at is this full formula here. Of this

chunk. And what it's going to be good for is a real-life problem. That is, a problem that really

came up over the summer, and this fall, at a couple of universities near here, where people

were trying to figure out a phenomenon which is well-known. Namely, if you have a bunch of

particles in a fluid, and maybe the size of these things is 1 micron. That is, the radius is 1

micron. And then you have a bunch of other little particles, which are a lot smaller. Maybe 10

nanometers. Then what happens is that the particles, the big particles, like to hug each other.

They like to clump together, they're very nice. Friendly characters. So what's the explanation

for this? The explanation is that actually they are not quite as friendly as they might seem.

What's really happening is that the little guys are shoving them around. And pushing them

together. And they have sharp elbows, the little ones and they're pushing them. Don't like

them to be around and they're pushing them together. But there's actually another possibility.

Which is that they also will stick to the sides of the container.



So there are two things that actually happen here. And if you want to get a quantitative handle

on how much of this happens, it has to do with how much space these things take up. And so

the issue is some kind of overlap between a band around one sphere and a band around the

other sphere. And this overlap region is what you have to calculate. You have to calculate

what's in here. And you can do that using this formula here. It's not even difficult. So this is, if

you cut it in half, turns out to be two of these guys. And then you're on your way to figuring out

this problem. And the question is, which do they prefer. Do they prefer to touch each other, or

do they prefer to touch the wall. Do they all cluster to the wall. So you can actually see this in

solutions, what they do. And the question is, to what extent do they prefer one configuration to

the other.

So that's a real, live problem, which really comes up. Came up just this year. And frequently

comes up. Which is solved by our first calculation. So now I have, I called this Method 1. For

solids of revolution, which is called the method of disks. And now I need to tell you about the

other standard method. Which is called the method of shells. So this is our second method. I'm

going to illustrate this one with a holiday-themed example here. This is supposed to be a

witches' cauldron. Whoops, witch, witches, well. Maybe more than one witch will have this

cauldron here. So here's this shape. And we're going to figure out how much liquid is in here.

I'm going to plot this. Maybe I'll put this down just a bit lower here. And I'm going to make it a

parabola. This is y = x^2. And I'm going to make the top height be y = a.

So here's my situation. And I want to figure out how much liquid is in here. Now, the reason

why I presented the problem in this form, of course, is really to get you used to these things.

And the first new thing that I want you to get used to is the idea that now we can also revolve

around the y-axis, not just the x-axis. So this one is going to be revolved around the y-axis.

And that's what happens. If you spin the parabola around, you get this kind of shape, this kind

of solid shape here.

Now, I'm going to use the same kind of slicing that I did before. But it's going to look totally

different. Namely, I'll draw it in red again. I'm going to take a little slice over here. And now I

want to imagine what happens if it gets revolved around the y-axis. This time it's not a disk.

Actually, if I revolve this around the other way, it would have had a hole in it. Which is also

possible to do. That's practically the same as the method of disks. You'll maybe discuss that in

recitation. Anyway, we're going to revolve it around this way. So again, I need to sweep it

around, swing it around like this. And I'll draw the shape. It's going to sweep around in a circle



and maybe it'll have a little bit of thickness to it. And this is the thing that people call a shell.

This is the so-called shell of the method. I would maybe call it a cylinder, and another way of

thinking about it is that you can maybe wrap up a piece of paper. Like this. There it is, there's

a cylinder you can see. Very thin, right? Very thin.

Now, the reason why I used the piece of paper as an example of this is that I'm going to have

to figure out the volume of this thing. Its thickness, as usual, is equal to dx. Its height is what?

Well, actually I have to use the diagram to see that. The top value is a, and the bottom value is

what we call y. So the height is equal to, I'm sorry, a - y. Now, again this is an incredibly risky

thing here. And I've done this before I pointed this out on the very first day of lecture. The

letter y represents a lot of different things. And in disguise, when I call this y, I mean y = x^2. In

other words, the interesting curve. I don't mean y = a, which is the other part.

In general, you might think of it as being equal to y_(top) - y_(bottom). So there are, of course,

two y's involved. In disguise. But we have a shorthand, and the sort of uninteresting one we

call by its-- we just evaluate immediately, and the interesting one we leave as the symbol y.

Now, the last bit that I have to do, I claim, in order to figure this out, is the circumference. And

the reason for that is that if I think of this thing as like this tube, or piece of paper here, in order

to figure out how much stuff there is here, all I have to do is unfold it. Its size, the whole

quantity of paper here is the same whether it's rolled up like this or whether it's stretched out.

So if I unwrap it, it looks like what? Well, it looks like kind of a slab? Right, it looks like just a

slab like this. And again, the thickness is dx. The height is a - y. And now we can see that the

length here is all the way around. It's the circumference. So this is going to be the

circumference when I unwrap it. And in order to figure out the circumference, I need to figure

out the radius. So the radius is, on this diagram, is right over there. This is the radius. And that

distance is x. So this length here is x. And so this circumference is 2 pi x. And this height is still

ay. a - y, sorry. And the thickness is still dx.

So in total, we're just going to multiply these numbers together to get the total volume. We

have, in other words, dV is equal to the product of the (2 pi x) dimension dimension, the (8 - y)

dimension, and the dx dimension. Incidentally, dimensional analysis is very useful and

important in these problems. You can see that there are three lengths being multiplied

together. So we'll get a volume in end. Something cubic. And we will be coming back to that,

because it's a quite subtle issue sometimes. So here's the formula, and let's simplify it a little

bit. We have 2 pi x times, remember, first I have to substitute, otherwise I'm never going to be



able to integrate. And then I rewrite that as 2 pi (ax - x^2, whoops, x^3) dx. Better not get that

wrong. And now the last little bit here, that I had better be careful about in order to figure out

what the total volume is, is the limits.

So the volume is going to be the integral of this quantity 2 pi (ax - x^3) dx. And now I have to

pay attention to what the limits are. Now, here you have to be careful. x is possibly the-- You

have to always go back to the 2-D diagram. I went to it immediately, but that's the whole point.

Is that everything gets read off from this diagram here. When you take this guy and you sweep

it around, you take care of everything that's to the left. So we only have to count what's to the

right. We don't have to count anything over here. Because it's taken care of when we sweep

around. So the starting place is going to be x = 0. That's where we start. And where we end is

the farthest, rightmost spot for x. Which is down here. You've got to watch out about where

that is. In the y variable, it's up at y = a. But in the x variable, we can see that it's what? It's the

square root of a. So these limits, this is where you're going to focus all your attention on the

integrand and getting it just right. And then you're going to lose your steam and not pay

attention to the limits. They're equally important. You've no hope of getting the right answer

without getting the limits right.

So this is the integral from 0 to square root of a. Again, that's just because y = a and y = x^2

implies x = square root a. That's that upper limit there. And now, we're ready to carry out this,

to evaluate this integral. So we get 2-- sorry, we get 2 pi ax, that's pi ax^2. Maybe I'll leave the

2's in there. 2 pi ax^2 is the antiderivative of this ax^2 / 2, and then here x^4 / 4, evaluated at 0

and square root of a. And finally, let's see, what is that. That's 2 pi (a^2 / 2 - a^2 / 4). Which is

a total of 1/4, right, 2 pi a^2 / 4. Which is pi/2 a^2. Yes, question.

STUDENT: [INAUDIBLE]

PROFESSOR: Right. So the question is, why did I integrate only from the middle to this end, instead of all the

way from over here, minus square root of a, all the way to the plus end. And the reason is that

you have to look at what's happening with the rotation. This red guy, when I swept it around, I

counted the stuff to the right and the left. So in other words, if I just rotate the right half of this,

I'm covering the left half. So if I counted the stuff from minus square root of a, I would be doing

it twice. I would be doubling what I need. So it's too much. Another way of saying it is if I

wanted to take the whole region, if I rotate it around only 180 degrees, only pi, that would fill

up the whole region, if I did both halves. And then instead of a circumference, instead of a 2 pi

x, I could use a pi x. But then I would have double what I had. So there are two ways of looking



at it. The same goes, actually, for the football case. When I have that football, I didn't count the

bottom part. Because when I swung it around the x-axis, the top part sufficed and I could

ignore the bottom half. Yeah, another question.

STUDENT: [INAUDIBLE]

PROFESSOR: Ooh, good question. The question is, when do you know, how do you know when to take the

rectangle to be vertical or horizontal. So far we've only done vertical rectangles. And I'm going

to do a horizontal example in a second. And the answer to the question of when you do it is

this. You can always set it up both ways. One way may be a difficult calculation and one way

may be an easier calculation. Yesterday, we did it - or, sorry, the last time. Yeah, I guess it

was yesterday. We did it with-- and the horizontal and the vertical were quite different in

character. One of them was really a mess, and one of them was a little easier. So very often,

one will be easier than the other. Every once in a while, one of them is impossible and the

other one is possible. In other words, the difference in difficulty can be extreme. So you don't

know that in advance. Yeah, another question.

STUDENT: [INAUDIBLE]

PROFESSOR: The question is, did we just find the volume when you rotate this green region around. Or, did

we find the volume when we rotate this whole region. In other words, just the right half or the

right and the left half. The answer is both. The region that you get is the same. You always get

this cauldron, whether you take this right half when you rotate it around or you take both and

you rotate it around. So the answer to both of those questions is the same and it's this. Yes.

STUDENT: [INAUDIBLE]

PROFESSOR: So that if you rotated them both around and you only wanted to cover things once, you would

rotate halfway around. Only by 180 degrees. That's true. But you can rotate around as many

times as you want. You're still covering the same thing. Over and over and over and over

again. So let's go on. I have a very subtle point that I need to discuss with you in order to go

on to the next application.

So here's my, and I do want to get to the point of horizontal cross-sections as well. So let's

continue here. So the first thing that I want to point out to you now is, I want you to beware of

units. There's something a little fishy in this problem. And it can be summarized in the

character of the answer, which is just a little bit not clear. Namely, it looks like it's a^2, right?



And we know that a is in units and we should've gotten cubic units. So there's something a

little bit tricky about this question. And so I want to illustrate the paradox right now. So,

suppose that a = 100 centimeters. And suppose the units are centimeters. Then the formula

for the volume is pi/2 100^2. and the units we must take are centimeters cubed. Despite the

fact that you kind of want to square the centimeters. But that's not what this problem says. OK,

so this is the situation that we've got. Now, if you work out what this is, to figure out what the

volume of this cauldron is, what you find is that it's pi / 2 times, well, 10^4 is 10 * 1,000

centimeters cubed. And those are otherwise known as liters. So this is approximately 10 pi / 2

liters, which is about 16 liters. And so that's how much was in the cauldron under this choice of

units.

Now, I'm going to make another choice of units now. And we're going to make a comparison.

Suppose that the units are 1 meter. Looks like it should be the same, but if I calculate the

volume, it's going to be pi / 2, and 1^2 times meters cubed. That's what the formula tells us to

do. And if you calculate that out, that's pi / 2 (100 cm)^3. And with this unit notation we really

do want to cube the centimeters and cube the 100. So we get pi / 2. And here we get 10 ^ 6

cm^3. And that comes out to pi / 2 * 1000 liters. Or, in other words, about 1600 liters. So I'd

like to ask you first to contemplate this. And this is a paradox. And this is a serious paradox. If

you really want to apply problems, you actually have to understand what your answers mean.

So what do you think is going on here? Yeah.

STUDENT: [INAUDIBLE]

PROFESSOR: Yes.

STUDENT: [INAUDIBLE]

PROFESSOR: Right. So the question is, how could either of these make sense. How am I dealing with the

units in either case. So now I'm going to explain to you the answer. Because this is really quite

puzzling. But it has a resolution. The answer to this question is that both answers are correct.

This is correct reasoning in both cases. What's the matter is that you have to interpret the

equation y = x^2 in two different ways. Two ways. So let me explain what they are. For

instance, you can take y = x^2 in centimeters. So y = x ^2 in centimeters. In which case, the

picture looks like the following. a = 100 centimeters. And this distance here, which is the x

value, this is 10. This is 10 centimeters. And that's what the relationship means. So the top of

the cauldron, if you like, this distance here is 20 centimeters. This is actually very badly drawn



to scale. It's actually very, very, deep, this thing. It's a rather skinny, deep one. So this is very

much not to scale, this picture.

The other picture, the other picture is interpreting y = x^2 in meters. And that's more like what I

had in mind, actually. I had in mind this big vat here. And this distance here is 1 meter, and

then the square root of 1 is 1. So this distance here is also 1 meter. And the top is 2 meters.

Now, it's not that crazy. And in fact it's easy to check that, it's pretty reasonable in terms of

scale. That this thing has 16 liters in it. And this guy has 1600 liters in it. So you actually have

to know what your symbols mean when you're dealing with these kinds of applied problems.

And if you're ever really going to do some real consequences, you have to know what the units

mean. And the problem with the equation y = x^2 is that it's the one that violated scaling rules.

Yeah.

STUDENT: [INAUDIBLE]

PROFESSOR: Yeah. STUDENT: [INAUDIBLE]

PROFESSOR: No.

STUDENT: [INAUDIBLE]

PROFESSOR: OK, so the question is whether the formula V = pi / 2 a^2. This is the correct answer to the

problem. But it is not consistent in units. If you plug in a equals some number of centimeters,

some number of millimeters, some number of inches and so on, every single time you'll get a

different answer. And they're all inconsistent. In other words, this formula violates scaling.

STUDENT: [INAUDIBLE]

PROFESSOR: If you study each step correctly, you will discover that these are the consistent and correct

statements, what I'm writing on the blackboard. And this makes sense in a unit-less sense. But

then if you actually stick units on them, one of them, they both are correct. And one of them

describes this situation and one of them describes this situation. And it's a mistake to think of

this as being 1 meter and cubing the meters. That will be an error that will cause you

problems. This 1 is just unit-less, and then the meters cubed got converted. So I encourage

you to study this on your own.

So now I'm going to introduce the next problem. We'll have to solve it next time. But the

reason why I spent all the time on units is that otherwise it would be impossible for you to



believe me when I do this next calculation. Because we're trying to get a real answer out of a

real question. And I'm going to make conversions between centimeters and meters back and

forth. And we have to get it consistent in order to have the right answer. So there was a

reason for illustrating this pitfall. So this second, the next thing that I'd like to do, is I'd like to

boil the water in the witches' cauldron. This is definitely seasonally appropriate, since we're

approaching Halloween. And we'll work it out fully next time.

Now, I'm going to introduce another feature into the problem. And this is the one that I want

you to understand now. We'll set it all up tomorrow, but right now I need you to understand

what the new main idea that we're going to get. There is the new physical feature that I'm

going to add to this problem is that if when you're boiling, when the witches are boiling this

water, the temperature of the water is not the same at each level in the kettle. At the bottom of

the kettle, where you're heating it up, it's at its highest temperature. So at the bottom it's going

to be, say, 100 degrees. That is, it's going to be totally boiling. 100 degrees Celsius. And at the

top, it's going to be, say, 70 degrees. Right, it's very cold outside. In fact, it's 0 degrees

outside. Which is the temperature at which all witches operate, I think. Anyway, so they're

boiling their stuff.

And the question that we're going to ask is how much heat, how much heat, do they need to

do it. Now, the thing starts out at 0 degrees Celsius. And we're going to heat it up to this

temperature configuration here. But it's rising from 100 down here to 70 up here. So the

temperature is varying in height. And for simplicity I'm going to make the formula for the

temperature be 70 at the top and 100 at the bottom. So it's going to be 100 - 30y. We'll let the

level be 1, here. Sorry, 30. I said 3-- I wrote 3, but I meant 30. So this is the situation that we

have.

Now, the point about this problem is we're going to figure out the total temperature, the total

amount of heat that you need to add in order to heat this thing up. That's going to be

temperature times volume. But some places will count more than others. These will be hotter,

but there's less water down here. This is wider up here, so there's more water up here. So

there are various things that are varying in this problem. Now, the only way to set up so that it

works is to chop things up horizontally instead of vertically. Because it's on the horizontal

levels that the temperature is constant. So we'll have an easy calculation for how much it takes

to heat up a layer, a horizontal layer. When we rotate this guy around the y axis, that is which

kind of shape. It's a disk. So actually this one's going to be an easier problem. It's going to be



a disk problem, not a shell problem. But we're going to have to work things out with respect to

the dy variation. In other words, the integral will be with respect to dy. So we will do that next

time. We'll figure out how much heat it takes to boil the kettle.


